Abstract:In order to produce large area of uniform SiC coating, the study of the variation law of deposition rate at different positions in the reaction chamber was required. The process of chemical vapor deposition of CH3SiCl3-H2-Ar system was simplified to a two-step reaction of gas phase cracking and surface deposition, and a two-dimensional reaction-transport model was established. The Computational Fluid Dynamics (CFD) software was used to analyze the effects of gas flow on the temperature field, velocity field, reactant concentration field and deposition rate in the direction of substrate height. The results show that, the deposition distribution shows different trends due to different retention time at different gas flow rates. The deposition thickness uniformity is better and the deposition rate is higher at moderate flow rates. Increasing the temperature can improve the inhomogeneity of deposition at high velocity. If the flow rate is constant and the pressure is too high, the natural convective vortex will be caused. The two-step simplified model can reflect the consumption of reactants and the uniformity of the coating under different conditions by comparing the calculated results with the relevant experimental data.
韩前武, 李国栋. CH3SiCl3-H2-Ar化学气相沉积SiC简化反应模拟[J]. 粉末冶金材料科学与工程, 2021, 26(2): 99-107.
HAN Qianwu, LI Guodong. Simplified reaction simulation of CH3SiCl3-H2-Ar chemical vapor deposition SiC. Materials Science and Engineering of Powder Metallurgy, 2021, 26(2): 99-107.
[1] 徐志淮, 李贺军. CVD生长SiC涂层工艺过程的正交分析研究[J]. 兵器材料科学与工程, 2000, 5(23): 36-40. XU Zhihuai, LIHejun. Study on orthogonal analysis of CVD growth process of SiC coating[J]. Ordnance Materials Science and Engineering, 2000, 5(23): 36-40. [2] 刘荣军, 张长瑞, 刘晓阳, 等. CVD过程中温度对SiC涂层沉积速率及组织结构的影响[J]. 航空材料学报, 2004, 4(24): 23-26. LIU Rongjun, ZHANG Changrui, LIU Xiaoyang, et al.Effect of temperature on deposition rate and microstructure of SiC coating in CVD process[J]. Journal of Aeronautical Materials, 2004, 4(24): 23-26. [3] 周乐平, 张明瑜, 黄启忠. 沉积条件对CVD法SiC涂层形貌和组成成分的影响[J]. 炭素技术, 2010, 5(29): 1-4. ZHOU Leping, ZHANG Mingyu, HUANG Qizhong.Effect of deposition conditions on morphology and composition of SiC coating by CVD method[J]. Carbon Technology, 2010, 29(5): 1-4. [4] 王毅, 杨晓辉, 白龙腾. 基于CFD的CVD布气装置模拟与优化设计[J]. 火箭推进, 2014, 3(40): 46-51. WANG Yi, YANG Xiaohui, BAI Longteng.Simulation and optimization design of CVD gas distribution device based on CFD[J]. Rocket Propulsion, 2014, 40(3): 46-51. [5] 贾林涛, 王梦千, 朱界, 等. 化学气相沉积法从MTS-H2-N2前驱体制备碳化硅涂层[J]. 陶瓷学报, 2020, 41(2): 257-263. JIA Lintao, WANG Mengqian, ZHU Jie, et al.Preparation of SiC Coating by Chemical Vapor Deposition from MTS-H2-N2 Pre-system[J]. Acta Ceramics Sinica, 2020, 41(2): 257-263. [6] YANG Y, ZHANG W G.Kinetic and microstructure of SiC deposited from SiCl4-CH4-H2[J]. Chinese Journal of Chemical Engineering, 2009, 17(3): 419-426. [7] 卢翠英, 成来飞, 赵春年, 等. 温度对化学气相沉积碳化硅涂层的影响[J]. 材料科学与工艺, 2010, 4(18): 575-578. LU Cuiying, CHENG Laifei, ZHAO Chunnian, et al.Effect of temperature on chemical vapor deposition of SiC coating[J]. Materials Science and Technology, 2010, 4(18): 575-578. [8] MAKINO S, INAGAKI M, NAKASHIMA K, et al.A simplified reaction model and numerical analysis for Si deposition from the SiHCl3-H2 system in vertical rotating disk reactors[J]. Journal of Crystal Growth, 2016, 454:156-163. [9] KEHAN Y, CLIFFORD C, HAYMAN S, et al.A combined CFD modeling and experimental study of pyrolytic carbon deposition[J]. Diamond and Related Materials, 2016, 70: 173-178. [10] SHWETANK Y, KINNOR C, CHANDRA V.Solar grade silicon production: A review of kinetic, thermodynamic and fluid dynamics based continuum scale modeling[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 1288-1314. [11] LI J, WANG J, CAI J D, et al.Numerical simulation and analysis of process parameters of GaN-MOCVD reactor[J]. International Communications in Heat and Mass Transfer, 2018, 91: 64-76. [12] HE D L, LIH, BAI J B. Experimental and numerical investigation of the position-dependent growth of carbon nanotube-alumina microparticle hybrid structures in a horizontal CVD reactor[J]. Carbon, 2011, 49(15): 5359-5372. [13] SUN G D, LI H J, FU Q G, et al.Finite element simulation of the effects of process parameters on deposition uniformity of chemical-vapor-deposited silicon carbide[J]. Computational Materials Science, 2009, 46(4): 1002-1006. [14] JINW, JUNW, KYOON C.Improvement of Uniformity in chemical vapor deposition of silicon carbide by using CFD[J]. Journal of the Korean Physical Society, 2016, 68(1): 170-175. [15] 孙国栋, 李贺军, 付前刚, 等. 异形构件化学气相沉积SiC涂层的数值模拟[J]. 固体火箭技术, 2017, 40(2): 232-238. SUN Guodong, LI Hejun, FU Qiangang, et al.Numerical simulation of chemical vapor deposition of SiC coating on special-shaped components[J]. Journal of Solid Rocket Technology, 2017, 40(2): 232-238. [16] LEONE S, KORDINA O, HENRY A, et al.Gas-phase modeling of chlorine-based chemical vapor deposition of silicon carbide[J]. Crystal Growth and Design, 2012, 12(4): 1977-1984. [17] GUANK, GAOY, ZENGQ F, et al.Numerical modeling of SiC by low-pressure chemical vapor deposition from methyltrichlorosilane[J]. Chinese Journal of Chemical Engineering, 2020, 28(6):1733-1743. [18] VENERONI A, MASI M.Gas-phase and surface kinetics of epitaxial silicon carbide growth involving chlorine-containing species[J]. Chemical Vapor Deposition, 2006, 12(8): 562-568. [19] YINGBIN G,MARK S,FRANCINE B, et al.Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 1. thermodynamics[J]. The Journal of Physical Chemistry A, 2007, 111(8):1462-1474. [20] 卢翠英, 成来飞, 赵春年, 等. MTS/H2体系CVD SiC的气相分析[J]. 无机材料学报, 2010, 25(8): 845-850. LU Cuiying, CHENG Laifei, ZHAO Chunnian, et al.Vapor phase analysis of CVD SiC in MTS/H2 system[J]. Journal of Inorganic Materials, 2010, 25(8): 845-850. [21] GE Y B, GORDON M S, BATTAGLIA F, et al.Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 2. reaction paths and transition states[J]. The Journal of Physical Chemistry A, 2007, 111(8):1475-1486. [22] GE Y B, GORDON M S, BATTAGLIA F, et al.Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 3. reaction rate constant calculations[J].The Journal of Physical Chemistry A, 2010, 4(6):2384-2392. [23] LU C Y, CHENG L F, ZHAO C N, et al.Kinetics of chemical vapor deposition of SiC from methyltrichlorosilane and hydrogen[J]. Applied Surface Science, 2009, 255(17): 7495-7499. [24] 张攀, 王伟文, 董海红, 等. 三氯氢硅和氢气系统中多晶硅化学气相沉积的数值模拟[J]. 人工晶体学报, 2010, 39(2): 494-499. ZHANG Pan, WANG Weiwen, DONG Haihong, et al.Numerical simulation of polysilicon chemical vapor deposition in trichlorosilane and hydrogen system[J]. Journal of Synthetic Crystals, 2010, 39(2): 494-499. [25] FERON O, LANGLAIS F, NASLAIN R, et al.On kinetic and microstructural transitions in the CVD of pyrocarbon from propane[J]. Carbon, 1999, 37(9):1343-1353. [26] 钟树泉, 任晓敏, 王琦, 等. MOCVD反应器热流场的数值模拟研究[J]. 人工晶体学报, 2008, 37(6): 1342-1348. ZHONG Shuquan, REN Xiaomin, WANG Qi, et al.Numerical simulation of heat flow field in MOCVD reactor[J]. Journal of Artificial Crystals, 2008, 37(6): 1342-1348. [27] RAMOS A, FILTVEDT W, LINDHOLM D, et al.Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a flfluidized bed reactor[J]. Journal of Crystal Growth, 2015, 431: 1-9. [28] 周光坰, 许世雄, 章克本, 等. 流体力学[M]. 北京: 高等教育出版社, 2011. ZHOU Guangtong, XU Shixiong, ZHANG Keben, et al.Fluid Mechanics[M]. Beijing: Higher Education Press, 2011.