Abstract:In order to reduce the thermal expansion coefficient of SiC-based composites, this paper composited positive thermal expansion material SiC and negative thermal expansion material β-eucryptite to prepare a near-zero expansion SiC-based composite, and systematically studied the effects of β-eucryptite content on the porosity, microstructure, thermal and mechanical properties of the material. The results show that with the increase of β-eucryptite content, the porosity of the material decreases, the closed porosity increases, and the pores gradually change from irregular shape to spherical shape. Under the dual effect of porosity and β-eucryptite phase, the coefficient of thermal expansion of the material decreases. When the mass fraction of β-eucryptite increases from 20% to 50%, the average coefficient of thermal expansion of the material at 30-1 200 ℃ decreases from 2.30×10-6 K-1 to -0.80×10-6 K-1, the porosity decreases from 36.9% to 12.9%, the thermal conductivity increases from 6.31 W/(m·K) to 8.85 W/(m·K), and the compressive strength increases from 176.3 MPa to 375.6 MPa.
[1] CHEN Q, LI S, ZHU L, et al.Research progress in high thermal conductivity of silicon carbide matrix composites reinforced with fibers[J]. Cailiao Gongcheng-Journal of Materials Engineering, 2023, 51(8): 46-55. [2] LIU G, ZHANG X, YANG J, et al.Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): joining processes, joint strength, and interfacial behavior[J]. Journal of Advanced Ceramics, 2019, 8(1): 19-38. [3] WANG C S, WU S Q, YAN C Z, et al.Research and applications of additive manufacturing technology of SiC ceramics[J]. Chinese Science Bulletin-Chinese, 2022, 67(11): 1137-1154. [4] ENYA K, YAMADA N, ONAKA T, et al.High-precision CTE measurement of SiC-100 for cryogenic space telescopes[J]. Publications of the Astronomical Society of the Pacific, 2007, 119(855): 583-589. [5] LI Z C, YIN X G, MA T, et al.Bending and thermal expansion properties of 2.5D C/SiC composites[J]. Materials Transactions, 2011, 52(12): 2165-2167. [6] 黄玉娟, 熊慧文, 邹金住, 等. 基于定向多孔SiC的浸渍-裂解法制备SiC陶瓷材料的结构与性能[J]. 粉末冶金材料科学与工程, 2020, 25(2): 133-139. HUANG Yujuan, XIONG Huiwen, ZOU Jinzhu, et al.Structure and properties of SiC ceramics prepared by dip cracking method based on oriented porous SiC[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(2): 133-139. [7] TENG F, YU K, LUO J, et al.Microstructures and properties of Al-50%SiC composites for electronic packaging applications[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(10): 2647-2652. [8] LIU Q, FAN C, WU G, et al.In-situ synthesis of Sc2W3O12/YSZ ceramic composites with controllable thermal expansion[J]. Ceramics International, 2015, 41(6): 8267-8271. [9] MILLER W, MACKENZIE D S, SMITH C W, et al.A generalised scale-independent mechanism for tailoring of thermal expansivity: positive and negative[J]. Mechanics of Materials, 2008, 40(4/5): 351-361. [10] WEI K, CHEN H, PEI Y, et al.Planar lattices with tailorable coefficient of thermal expansion and high stiffness based on dual-material triangle unit[J]. Journal of the Mechanics and Physics of Solids, 2016, 86: 173-191. [11] SIGMUND O, TORQUATO S.Design of smart composite materials using topology optimization[J]. Smart Materials & Structures, 1999, 8(3): 365-379. [12] RANGARAJAN A, D’MELLO R J, SUNDARARAGHAYAN V, et al. Minimization of thermal expansion of symmetric, balanced, angle ply laminates by optimization of fiber path configurations[J]. Composites Science and Technology, 2011, 71(8): 1105-1109. [13] LIU Q Q, YANG J, CHENG X N, et al.Preparation and characterization of negative thermal expansion Sc2W3O12/Cu core-shell composite[J]. Ceramics International, 2012, 38(1): 541-545. [14] MA J J, CAI C Y, XIE J W, et al.Design and preparation of LiAlSiO4-Al2O3 coating for the oxidation resistance improvement of SiC ceramics[J]. Surface and Coatings Technology, 2022, 448: 128917. [15] LI G J, FU R L, AGATHOPOULOS S, et al.Ultra-low thermal expansion coefficient of PZB/β-eucryptite composite glass for MEMS packaging[J]. Ceramics International, 2020, 46(6): 8385-8390. [16] YANG C, LI J P, YANG D L, et al.ZrW2O8 with negative thermal expansion fabricated at ultralow temperature: an energy-efficient strategy for metastablmaterial fabrication[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14747-14755. [17] LIU Q, YANG J, RONG X, et al.Structural, negative thermal expansion and photocatalytic properties of ZrV2O7: a comparative study between fibers and powders[J]. Materials Characterization, 2014, 96: 63-70. [18] YUAN B H, CAO W S, GE X H, et al.Substitutions of dual-ion Al3+/Mo6+ for Zr4+/V5+ in ZrV2O7 for realizing near-zero thermal expansion[J]. Acta Physica Sinica, 2017, 66(7): 076501. [19] MARINKOVIC B A, PONTÓN P I, ROMAO C P, et al. Negative and near-zero thermal expansion in A2M3O12 and related ceramic families: a review[J]. Frontiers in Materials, 2021, 8: 741560. [20] ZHOU C, ZHOU Y X, LIU S Y, et al.Lightweight and near-zero thermal expansion ZrW2O8-SiCnw/Al hybrid composites[J]. Journal of Alloys and Compounds, 2022, 907: 164444. [21] WANG B, XU S C, JIN F, et al.Effect of LiAlSiO4 particle size on the properties of LAS/SiC porous ceramics with near zero thermal expansion[J]. Ceramics International, 2014, 40(2): 2853-2856. [22] WANG B, YANG X H, ZENG D J, et al.Effect of glassy bonding materials on the properties of LAS/SiC porous ceramics with near zero thermal expansion[J]. Journal of the European Ceramic Society, 2014, 34(1): 91-95. [23] ZHONG Z, ZHANG B, TIAN Z, et al.Highly porous LAS-SiC ceramic with near-zero thermal expansion prepared via aqueous gel-casting combined with adding pore-forming agents[J]. Materials Characterization, 2022, 187: 111829. [24] KINGERY W D, BOWEN H K, UHLMANN D R.陶瓷导论[M]. 北京: 高等教育出版社, 2010: 536-543. KINGERY W D, BOWEN H K, UHLMANN D R.Introduction to Ceramics[M]. Beijing: Higher Education Press, 2010: 536-543.