The influence of different simulated coatings on electromagnetic thermal coupling field and wear resistance on the rail surface for the electromagnetic launch
YUAN Zihao, WANG Xing, LIU Ziyi, CHEN Deshan, KANG Li, LIN Yongqiang, LIANG Weihan, YAO Pingping
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Abstract:In order to investigate the wear and protection on the rail surface of electromagnetic launch under extreme electromagnetic thermal coupling field, based on COMSOL and ABAQUS finite element software, the electromagnetic thermal model and the thermal-mechanical coupling wear model for Mo, Ni, W wear-resistant and conductive coatings were established, and the influences of different wear-resistant and conductive coatings on the electromagnetic thermal distribution of electromagnetic launch and wear resistance of the rail were explored. The results show that the coating surface alters the distribution of current density on the rails, reducing the thermal effects and lowering the overall temperature. During electromagnetic launching, mechanical wear on the rails is primarily concentrated on the front of the section, and the rail wear is significantly reduced after applying the coatings. For uncoated rails, the maximum wear depth is 1.142 μm, and the wear volume is 2.170 mm3; after applying the Mo, Ni, and W coatings, the maximum wear depths of the rail are 0.070, 0.095, and 0.042 μm respectively, and the wear volume ranges from 0.030 to 0.069 mm3. Among them, the W coating exhibits the lowest maximum wear depth and wear volume due to its superior thermal conductivity, excellent electrical conductivity, high hardness, and outstanding wear resistance.
袁仔豪, 王兴, 刘梓屹, 陈德山, 康丽, 林永强, 梁伟晗, 姚萍屏. 电磁发射轨道表面不同模拟涂层对电磁热耦合场及耐磨性能的影响[J]. 粉末冶金材料科学与工程, 2025, 30(3): 245-260.
YUAN Zihao, WANG Xing, LIU Ziyi, CHEN Deshan, KANG Li, LIN Yongqiang, LIANG Weihan, YAO Pingping. The influence of different simulated coatings on electromagnetic thermal coupling field and wear resistance on the rail surface for the electromagnetic launch. Materials Science and Engineering of Powder Metallurgy, 2025, 30(3): 245-260.
[1] 吴金国, 林庆华, 弯港, 等. 基于物质点法的轨道炮刨削机理三维数值研究[J]. 爆炸与冲击, 2017, 37(2): 307-314. WU Jinguo, LIN Qinghua, WAN Gang, et al.3D numerical research of railgun gouging mechanism based on material point method[J]. Explosion and Shock Waves, 2017, 37(2): 307-314. [2] 陈景源, 汪笑鹤, 刘彬, 等. 电磁轨道炮轨道表面功能化和防护[J]. 兵器材料科学与工程, 2022, 45(2): 134-140. CHEN Jingyuan, WANG Xiaohe, LIU Bin, et al.Rail surface functionalization and protection of electromagnetic railgun[J]. Ordnance Material Science and Engineering, 2022, 45(2): 134-140. [3] SIOPIS M J, NEU R W.Materials selection exercise for electromagnetic launcher rails[J]. IEEE Transactions on Magnetics, 2013, 49(8): 4831-4838. [4] 闫涛, 刘贵民, 朱硕, 等. 电磁轨道失效与表面喷涂Mo技术研究[J]. 材料保护, 2018, 51(2): 31-35. YAN Tao, LIU Guimin, ZHU Shuo, et al.Failure analysis of electromagnetic rail and study of surface spraying Mo coatings[J]. Materials Protection, 2018, 51(2): 31-35. [5] 刘贵民, 杨忠须, 张一帆, 等. 基于正交试验法的超音速等离子喷涂钼涂层组织及性能研究[J]. 兵工学报, 2016, 37(8): 1489-1496. LIU Guimin, YANG Zhongxu, ZHANG Yifan, et al.Research on microstructure and properties of supersonic plasma sprayed Mo coating based on orthogonal experiment[J]. Acta Armamentarii, 2016, 37(8): 1489-1496. [6] 惠阳, 刘贵民, 闫涛, 等. 超音速等离子喷涂Mo涂层的载流摩擦磨损性能[J]. 中国表面工程, 2019, 32(2): 109-119. HUI Yang, LIU Guimin, YAN Tao, et al.Current-carrier tribological properties of Mo coating deposited by supersonic plasma spraying[J]. China Surface Engineering, 2019, 32(2): 109-119. [7] 鲁军勇, 贾顺凯, 李白, 等. 基于销盘载流摩擦平台的电磁发射轨道表面防护[J]. 海军工程大学学报, 2024, 36(2): 1-5. LU Junyong, JIA Shunkai, LI Bai, et al.Surface protection of electromagnetic launch rail based on pin-on-disc current carrying friction platform[J]. Journal of Naval University of Engineering, 2024, 36(2): 1-5. [8] 韩云天. 电磁发射装置轨道磨损时空分布研究[D]. 秦皇岛: 燕山大学, 2022. HAN Yuntian.Study on the spatiotemporal wear distribution of track of the electromagnetic launchers[D]. Qinhuangdao: Yanshan University, 2022. [9] 冯勇. 电磁发射装置电枢轨道摩擦磨损研究[D]. 秦皇岛: 燕山大学, 2018. FENG Yong.Research on the frictional wear of armature and rail in electromagnetic launcher[D]. Qinhuangdao: Yanshan University, 2018. [10] 李白, 鲁军勇, 谭赛, 等. 高速滑动电接触电枢表面动态磨损过程研究[J]. 电工技术学报, 2023, 38(1): 131-139. LI Bai, LU Junyong, TAN Sai, et al.Research on dynamic wear process of armature surface in high-speed sliding electric contact[J]. Transactions of China Electrotechnical Society, 2023, 38(1): 131-139. [11] 卢铜钢, 刘峰, 高翔, 等. 洛伦兹力与温度场作用下枢轨摩擦磨损特性[J]. 摩擦学学报, 2021, 41(4): 474-483. LU Tonggang, LIU Feng, GAO Xiang, et al.Wear characteristics between aramture and rails under the action of Lorentz force and temperature field[J]. Tribology, 2021, 41(4): 474-483. [12] 闫涛, 刘贵民, 朱硕, 等. 电磁轨道材料表面损伤及强化技术研究现状[J]. 材料导报, 2018, 32(1): 135-140. YAN Tao, LIU Guimin, ZHU Shuo, et al.Current research status of electromagnetic rail materials surface failure and strengthen technology[J]. Materials Review, 2018, 32(1): 135-140. [13] COLOMBO G R, OTOONI M, EVANGELISTI M P, et al.Application of coatings for electromagnetic gun technology[J]. IEEE Transactions on Magnetics, 1995, 31(1): 704-708. [14] 葛一凡. 直线电磁推进器电磁热耦合场仿真研究[D]. 武汉: 武汉工程大学, 2022. GE Yifan.Simulation study on electromagnetic thermal coupling field of linear electromagnetic propeller[D]. Wuhan: Wuhan Institute of Technology, 2022. [15] 徐凯. 大口径电枢起始阶段电流分布影响因素的仿真研究[D]. 武汉: 华中科技大学, 2017. XU Kai.Simulation study on influencing factors on current distribution in large caliber railgun at start-up stage[D]. Wuhan: Huazhong University of Science and Technology, 2017. [16] BROWN L, XU D, RAVI-CHANDAR K, et al.Coefficient of friction measurement in the presence of high current density[J]. IEEE Transactions on Magnetics, 2007, 43(1): 334-337. [17] 王贺, 靳一帆, 王延祥, 等. 基于ABAQUS的AlN绝缘涂层磨损机理仿真研究[J]. 机电产品开发与创新, 2023, 36(4): 34-38. WANG He, JIN Yifan, WANG Yanxiang, et al.Simulation research on wear mechanism of AlN insulating coating based on ABAQUS[J]. Development & Innovation of Machinery & Electrical Products, 2023, 36(4): 34-38. [18] 权莉, 康宁, 邵琴雯, 等. 航空器高升力系统万向节磨损数值仿真研究[J]. 航空工程进展, 2025, 16(3): 144-153. QUAN Li, KANG Ning, SHAO Qinwen, et al.Numerical simulation study on wear of universal joints in aircraft high lift systems[J]. Advances in Aeronautical Science and Engineering, 2025, 16(3): 144-153. [19] 马俊伟. 超高速电磁炮的多物理场耦合发射研究[D]. 秦皇岛: 燕山大学, 2023. MA Junwei.Study on launch of ultra high speed electromagnetic gun with multi physical field coupling[D]. Qinhuangdao: Yanshan University, 2023. [20] TABRIZI A T, AGHAJANI H, SAGHAFIAN H, et al.Correction of Archard equation for wear behavior of modified pure titanium[J]. Tribology International, 2021, 155: 106772. [21] 赵连风, 易丹青, 王斌, 等. 7075铝合金的梯度时效及其温度场模拟[J]. 粉末冶金材料科学与工程, 2017, 22(2): 141-150. ZHAO Lianfeng, YI Danqing, WANG Bin, et al.Gradient aging and temperature field simulation of 7075 aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(2): 141-150. [22] 吴金国, 李海元, 程年凯, 等. 电磁轨道炮电枢馈电位置研究[J]. 兵工学报, 2017, 38(6): 1052-1058. WU Jinguo, LI Haiyuan, CHENG Niankai, et al.Research on feeding position of armature in railgun[J]. Acta Armamentarii, 2017, 38(6): 1052-1058. [23] 杨帆. 电磁轨道瞬态温度效应研究[D]. 天津: 天津大学, 2019. YANG Fan.Study on transient temperature effect of rail in electromagnetic launch[D]. Tianjin: Tianjin University, 2019. [24] 康丽, 王兴, 刘梓屹, 等. 超高速滑动电接触CuCrZr合金轨道表面磨损机制及电接触性能[J]. 润滑与密封, 2024, 49(5): 8-14. KANG Li, WANG Xing, LIU Ziyi, et al.Investigation on wear mechanism and electrical contact performance of CuCrZr alloy rail surfaces for high-speed sliding electrical contact[J]. Lubrication Engineering, 2024, 49(5): 8-14. [25] 许建峰, 周雳, 马国政, 等. 载荷对铜合金表面激光熔覆钼基涂层载流摩擦行为的影响[J/OL]. 中国表面工程, [2025-02-19]. http://kns.cnki.net/kcms/detail/11.3905.TG.202 41217. 1018.013.html. XU Jianfeng, ZHOU Li, MA Guozheng, et al. Effects of loads on the current-carrying frictional behaviors of mo-based coatings by laser cladding on copper alloy[J/OL]. China Surface Engineering, [2025-02-19]. http://kns.cnki. net/kcms/detail/11.3905.TG.20241217.1018.013.html. [26] 马胜军. 多元阵列喷射电沉积制备铜/镍多层膜及其性能研究[D]. 南京: 南京航空航天大学, 2012. MA Shengjun.Study of characteristic of Cu/Ni multilayers prepared by multicomponent arrayed jet electrodeposition[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. [27] LU T T, HUA D P, AN B L, et al.Improved anti-adhesive wear performance of rail/armature pair via interfacial energy modulation for electromagnetic launching applications[J]. Scripta Materialia, 2023, 236: 115677.