1. School of Science, East China Jiaotong University, Nanchang 330013, China; 2. School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
Abstract:Copper and copper alloy have excellent electrical conduction, heat conduction and other characteristics, the development of 3D printing makes the importance of bronze alloy precision components increasingly prominent in the high-end manufacturing. Bronze alloys were prepared by laser powder bed fusion technique with different scanning speed (200, 400, 600 mm/s) in this paper, the microstructures, mechanical properties, and tribological properties were studied by optical microscopic observation, hardness test, friction experiment, three-dimensional morphology analysis, SEM and EDS characterization analysis. The results indicate that with the increase of scanning speed, the porosity of 3D printed bronze alloy cladding layer increases, the grain size of molten pool decreases, the grain structure becomes more dense, the hardness increases; tribological property of 3D printed bronze alloy increases and the friction loss decreases. Moreover, the wear mechanism of 3D printed bronze alloy is mainly adhesion wear and abrasive wear, and oxidation wear is more serious under the condition of low scanning speed.
[1] 郑肃, 李雨阳, 陈鹏起, 等. 铜及铜合金增材制造技术现状和发展趋势[J]. 有色金属加工, 2024, 53(1): 23-31. ZHENG Su, LI Yuyang, CHEN Pengqi, et al.Current situation and development trend of additive manufacturing technology for copper and copper alloys[J]. Nonferrous Metals Processing, 2024, 53(1): 23-31. [2] 马治博. Cu-Cr-Zr铜合金选择性激光熔化成形机理及力学性能研究[D]. 重庆: 重庆大学, 2020. MA Zhibo.Forming mechanism and properties of Cu-Cr-Zr copper alloy in selective laser melting[D]. Chongqing: Chongqing University, 2020. [3] SINGH S, MOHANTY R P, MANGLA S K, et al.Critical success factors of additive manufacturing for higher sustainable competitive advantage in supply chains[J]. Journal of Cleaner Production, 2023, 425: 138908. [4] YAN X C, CHEN C Y, CHANG C, et al.Study of the microstructure and mechanical performance of C-X stainless steel processed by selective laser melting (SLM)[J]. Materials Science and Engineering A, 2020, 781: 139227. [5] 张立浩, 钱波, 张朝瑞, 等. 金属增材制造技术发展趋势综述[J]. 材料科学与工艺, 2022, 30(1): 42-52. ZHANG Lihao, QIAN Bo, ZHANG Chaorui, et al.Summary of development trend of metal additive manufacturing technology[J]. Materials Science and Technology, 2022, 30(1): 42-52. [6] 严侃, 高志杰, 高磊, 等. 电子束选区熔化增材制造金属材料研究进展[J]. 热加工工艺, 2024, 53(11): 7-13. YAN Kan, GAO Zhijie, GAO Lei, et al.Research progress of electron beam selective melting additive manufacturing metal materials[J]. Hot Working Technology, 2024, 53(11): 7-13. [7] LIU Y, LIU G T, MENG F W, et al.An overview of multi- material additive manufacturing processes[J]. Aerospace China, 2025, 25(3/4): 3-18. [8] CONSTANTIN L, WU Z P, LI N, et al.Laser 3D printing of complex copper structures[J]. Additive Manufacturing, 2020, 35: 101268. [9] KARTHIK G M, SATHIYAMOORTHI P, ZARGARAN A, et al.Novel precipitation and enhanced tensile properties in selective laser melted Cu-Sn alloy[J]. Materialia, 2020, 13: 100861. [10] 朱勇强, 杨永强, 王迪, 等. 纯铜/铜合金高反射材料粉末床激光熔融技术进展[J]. 材料工程, 2022, 50(6): 1-11. ZHU Yongqiang, YANG Yongqiang, WANG Di, et al.Progress in laser powder bed fusion of pure copper/copper alloy highly reflective metal materials[J]. Journal of Materials Engineering,2022, 50(6): 1-11. [11] 王阳波, 李瑞迪, 支盛兴, 等. 激光粉末床熔融制备高强度Al-Mg-Sc-Er-Zr合金的组织与力学性能[J]. 粉末冶金材料科学与工程, 2024, 29(6): 496-504. WANG Yangbo, LI Ruidi, ZHI Shengxing, et al.Microstructure and mechanical properties of high strength Al-Mg-Sc-Er-Zr alloy fabricated by laser powder bed fusion[J]. Materials Science and Engineering of Powder Metallurgy, 2024, 29(6): 496-504. [12] 祝贤智, 成会朝, 周承商, 等. 挤出式3D打印工艺制备WC-10Co硬质合金的显微结构与力学性能[J]. 粉末冶金材料科学与工程, 2023, 28(2): 141-150. ZHU Xianzhi, CHENG Huichao, ZHOU Chengshang, et al.Microstructure and mechanical properties of WC-10Co cemented carbide prepared by extrusion 3D printing[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(2): 141-150. [13] 肖叶龙, 熊科兴, 陈旭军, 等. 3D打印铜及铜合金的研究与应用现状[J]. 粉末冶金工业, 2025, 35(1): 1-14. XIAO Yelong, XIONG Kexing, CHEN Xujun, et al.Research and application of 3D-printed copper and copper alloys: a review[J]. Powder Metallurgy Industry, 2025, 35(1): 1-14. [14] 叶安梁, 姜雁斌, 彭超群, 等. 增材制造铜及铜合金的研究进展[J]. 中国有色金属学报, 2024, 34(4): 1071-1090. YE Anliang, JIANG Yanbin, PENG Chaoqun, et al.Research progress on additive manufacturing of copper and its alloys[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(4): 1071-1090. [15] 赵志斌, 王晨希, 张兴武, 等. 激光粉末床融增材制造过程智能监控研究进展与挑战[J]. 机械工程学报, 2023, 59(19): 253-276. ZHAO Zhibin, WANG Chenxi, ZHANG Xingwu, et al.Research progress and challenges in process intelligent monitoring of laser powder bed fusion additive manufacturing[J]. Journal of Mechanical Engineering, 2023, 59(19): 253-276. [16] 刘书俊, 肖文龙, 杨昌一, 等. 激光粉末床熔融增材制造耐热铝合金的研究进展[J]. 材料导报, 2024, 38(18): 175-183. LIU Shujun, XIAO Wenlong, YANG Changyi, et al.Recent progress in heat-resistant aluminum alloy fabricated by laser powder bed fusion additive manufacturing[J]. Materials Reports, 2024, 38(18): 175-183. [17] HAN C J, ZOU Y J, HU G L, et al.Effect of process parameters on microstructure and mechanical properties of a nickel-aluminum-bronze alloy fabricated by laser powder bed fusion[J]. Journal of Central South University, 2024, 31(8): 2944-2960. [18] YANG X, QI Y, ZHANG W Q, et al.Laser powder bed fusion of C18150 copper alloy with excellent comprehensive properties[J]. Materials Science and Engineering A, 2023, 862: 144512. [19] 魏瑛康, 刘瑶珊, 王岩, 等. 铜及铜合金粉末床熔融增材制造研究进展[J]. 中国材料进展, 2024, 43(12): 1099-1110. WEI Yingkang, LIU Yaoshan, WANG Yan, et al.Research progress of copper and copper alloy powder bed fusion additive manufacturing[J]. Materials China, 2024, 43(12): 1099-1110. [20] TRAN T Q, CHINNAPPAN A, LEE J K Y, et al. 3D printing of highly pure copper[J]. Metals, 2019, 9(7): 756. [21] WANG D Z, LI K L, YAO J, et al.Porosity, texture, and mechanical properties of pure copper fabricated by fine green laser powder bed fusion[J]. Optics & Laser Technology, 2025, 181: 112009. [22] JADHAV S D, DHEKNE P P, BRODU E, et al.Laser powder bed fusion additive manufacturing of highly conductive parts made of optically absorptive carburized CuCr1 powder[J]. Materials & Design, 2021, 198: 109369. [23] SIDDAIAH A, KASAR A, KUMAR P, et al.Tribocorrosion behavior of Inconel 718 fabricated by laser powder bed fusion-based additive manufacturing[J]. Coatings, 2021, 11(2): 195. [24] 任政, 曹明轩, 王敏, 等. 激光选区熔化Cu-10Sn合金组织和性能研究[J]. 新技术新工艺, 2023(7): 68-77. REN Zheng, CAO Mingxuan, WANG Min, et al.Research on Cu-10Sn alloy structure and properties of laser selective melting[J]. New Technology & New Process, 2023(7): 68-77. [25] 刘斌, 路声宇, 李忠华, 等. CuSn10合金选区激光熔化成形及热处理工艺研究[J]. 热加工工艺, 2022, 51(4): 121-125. LIU Bin, LU Shengyu, LI Zhonghua, et al.Research on heat treatment process of CuSn10 alloy fabricated by selective laser melting[J]. Hot Working Technology, 2022, 51(4): 121-125. [26] 李继康, 张净凯, 张振武, 等. 激光选区熔化Cu-15Ni-8Sn合金的显微组织、拉伸和摩擦磨损性能[J]. 中国有色金属学报, 2023, 33(2): 386-399. LI Jikang, ZHANG Jingkai, ZHANG Zhenwu, et al.Microstructure, tensile and tribological properties of Cu-15Ni-8Sn alloy fabricated by selective laser melting[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(2): 386-399. [27] 傅广, 李舒玥, 李泓历, 等. 激光选区熔化铜合金多道成形的熔池行为和缺陷机理[J]. 表面技术, 2024, 53(15): 118-128. FU Guang, LI Shuyue, LI Hongli, et al.Melt pool behaviour and defect mechanism in multi-track formation of selective laser melting copper alloys[J]. Surface Technology, 2024, 53(15): 118-128. [28] 杨睿. 电子束选区熔化3D打印铜成形工艺研究[D]. 昆明: 昆明理工大学, 2020. YANG Rui.The research on the forming process by selective electron beam melting 3D printing of copper[D]. Kunming: Kunming University of Science and Technology, 2020. [29] 吴谊友, 丁柔, 陈超, 等. 3D 打印铜及铜合金的研究进展[J]. 粉末冶金材料科学与工程, 2022, 27(2): 121-128. WU Yiyou, DING Rou, CHEN Chao, et al.Research progress on 3D printing of pure copper and copper alloys[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(2): 121-128. [30] XUE Y Y, SHAO Q, MU J H, et al.Microstructure and compression performance of novel AlSi10Mg composite auxetic structures fabricated by additive manufacturing[J]. Materials Science and Engineering A, 2024, 897: 146330. [31] 张晓雅, 李现兵, 谈震, 等. 激光选区熔化水雾化Cu-10Sn合金粉末成形件的微观组织结构及力学性能研究[J]. 中国激光, 2018, 45(10): 1002009. ZHANG Xiaoya, LI Xianbing, TAN Zhen, et al.Microstructure and mechanical properties of water atomized Cu-10Sn alloy powder formed parts by selective laser melting[J]. Chinese Journal of Lasers, 2018, 45(10): 1002009. [32] 刘斌, 索超, 李忠华, 等. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 155-165. LIU Bin, SUO Chao, LI Zhonghua, et al.Research status of the selective laser melting fabrication of copper alloys[J]. Materials Reports, 2024, 38(7): 155-165. [33] ZHANG K, LIU W D, LIU W J, et al.Effects of WC particles on the microstructure and properties of copper matrix composites by selective laser melting[J]. Journal of Alloys and Compounds, 2025, 1010: 177734.