Effect of beryllium sulfate crystallization temperature on the properties of beryllium oxide
QIN Guosong, YUAN Tiechui, GUAN Jianbo, LI Ruidi
1. State Key Laboratory of Powder Metallurgy, Cntral South University, Changsha 410083, China; 2. China Minmetals Beryllium Co., Ltd, Changsha 410200, China
Abstract:In this paper, the saturated BeSO4 solution at 90 ℃ was cooled and crystallized at 5, 15, and 25 ℃, and then the BeSO4 powder was calcined to obtain BeO powder. The BeO powder was subjected to ball milling, spray granulation, pressing, and sintering to prepare BeO ceramics, and the effects of cooling crystallization temperature on the morphology and particle size of BeO powder, as well as the morphology and properties of BeO ceramics were studied. The results show that the particle size of BeO powder decreases with the decrease of cooling crystallization temperature, and the shape of BeO particles become more uniform and regular. The density of BeO ceramics increases from 2.86 g/cm3 to 2.93 g/cm3, the bending strength increases from 243 MPa to 270 MPa, and the thermal conductivity increases from 247 W/(m·K) to 292 W/(m·K) with the cooling crystallization temperature decreases from 25 ℃ to 5 ℃.
覃国松, 袁铁锤, 管建波, 李瑞迪. 硫酸铍结晶温度对氧化铍性能的影响[J]. 粉末冶金材料科学与工程, 2025, 30(3): 215-223.
QIN Guosong, YUAN Tiechui, GUAN Jianbo, LI Ruidi. Effect of beryllium sulfate crystallization temperature on the properties of beryllium oxide. Materials Science and Engineering of Powder Metallurgy, 2025, 30(3): 215-223.
[1] 李文芳, 黄小忠, 杨兵初, 等. 氧化铍陶瓷的应用综述[J]. 轻金属, 2010(2): 20-30. LI Wenfang, HUANG Xiaozhong, YANG Bingchu, et al.The application of beryllia ceramics[J]. Light Metals, 2010(2): 20-23. [2] 李春雷. 浅谈氧化铍的应用市场与生产技术现状[J]. 新疆有色金属, 2007, 30(4): 31-33. LI Chunlei.Brief discussion on the application market and production technology status of beryllium oxide[J]. Xinjiang Nonferrous Metal, 2007, 30(4): 31-33. [3] 李川. 氧化铍产品的生产应用及市场[J]. 新疆有色金属, 2005, 28(S1): 31-33. LI Chuan.Production applications and market of beryllium oxide products[J]. Xinjiang Nonferrous Metal, 2005, 28(S1): 31-33. [4] 李卫, 叶红齐, 刘振国. 硫酸法处理含氟铍矿石的工艺改进研究[J]. 湖南冶金, 2003, 31(4): 32-35. LI Wei, YE Hongqi, LIU Zhenguo.Investigation on the treatment for beryllium ores containing fluorine with sulfate process[J]. Hunan Metallurgy, 2003, 31(4): 32-35. [5] 刘柳辉. 绿柱石浮选粉矿生产工业氧化铍的实践[J]. 稀有金属与硬质合金, 2002, 30(4): 25-26. LIU Liuhui.Production of commercial beryllium oxide from beryl flotation fine concentrate[J]. Rare Metals and Cemented Carbides, 2002, 30(4): 25-26. [6] 翁鸿蒙. 硫酸-萃取法制取氧化铍工艺研究取得重要成果[J]. 新疆有色金属, 2012, 35(2): 58. WENG Hongmeng.Research on the process of producing beryllium oxide by sulfuric acid extraction method achieves important results[J]. Xinjiang Nonferrous Metal, 2012, 35(2): 58. [7] 夏国定, 段春才. 硫酸-萃取法制取氧化铍工艺研究[J]. 新疆有色金属, 1990, 13(3): 10-15. XIA Guoding, DUAN Chuncai.Study on the process of producing beryllium oxide by sulfuric acid extraction method[J]. Xinjiang Nonferrous Metal, 1990, 13(3): 10-15. [8] 全俊. 氟化法生产工业氧化铍工艺研究[J]. 湖南有色金属, 2011, 27(5): 20-23. QUAN Jun.Study on the technology of beryllium oxide in fluorination production industry[J]. Hunan Nonferrous Metals, 2011, 27(5): 20-23. [9] 夏国定. 氟化法从新疆铍精矿提取氧化铍的工艺研究[J]. 新疆有色金属, 1988, 11(2): 7-16. XIA Guoding.Study on the process of extracting beryllium oxide from beryllium ores in Xinjiang using the fluorination method[J]. Xinjiang Nonferrous Metal, 1988, 11(2): 7-16. [10] ANDREEV A A, D'YACHENKO A N, KRAIDENKO R I. Fluorination of beryllium concentrates with ammonium fluorides[J]. Russian Journal of Applied Chemistry, 2008, 81(2): 178-182. [11] 王小锋, 王日初, 彭超群, 等. 聚丙烯酰胺凝胶法制备纳米BeO粉体前驱体的热分解过程及结晶机理[J]. 中国有色金属学报, 2012, 22(8): 2295-2301. WANG Xiaofeng, WANG Richu, PENG Chaoqun, et al.Thermal decomposition of precursor gel and crystalline mechanism of BeO nanopowders synthesized by polyacrylamide gel method[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(8): 2295-2301. [12] 覃渫兰, 张磊, 都健. 间歇冷却结晶过程的CFD-PBM数值模拟[J]. 大连理工大学学报, 2023,63(3): 231-240. QIN Xielan, ZHANG Lei, DU Jian.Numerical simulation of batch cooling crystallization process based on CFD-PBM[J]. Journal of Dalian University of Technology, 2023, 63(3): 231-240. [13] 朱振兴. 硫酸铵结晶过程的研究及其固-液多相流的计算流体力学研究[D]. 天津: 天津大学, 2008. ZHU Zhenxing.Study and multi-phase CFD modelling of ammoium sulphate crystallization[D]. Tianjin: Tianjin University, 2008. [14] 覃渫兰. 基于CFD-PBM的搅拌釜式结晶器的模拟与优化[D]. 大连: 大连理工大学, 2022. QIN Xielan.Simulation and optimization of stirred tank crystallizer based on CFD-PBM coupled model[D]. Dalian: Dalian University of Technology, 2022. [15] 仲维卓, 华素坤, 施尔畏. 极性晶体的结构与形貌[J]. 人工晶体学报, 1991, 20(1): 82-88. ZHONG Weizhuo, HUA Sukun, SHI Erwei.Structure and morphology of polar crystals[J]. Journal of Synthetic Crystals, 1991, 20(1): 82-88. [16] 李汶军, 施尔畏, 仲维卓, 等. 负离子配位多面体生长基元的理论模型与晶粒形貌[J]. 人工晶体学报, 1999, 28(2): 117-125. LI Wenjun, SHI Erwei, ZHONG Weizhuo, et al.Anion coordination polyhedron growth unit theory mode and crystal morphology[J]. Journal of Synthetic Crystals, 1999, 28(2): 117-125. [17] 仲维卓, 罗豪甦, 华素坤, 等. 晶体表面结构和负离子配位多面体生长基元[J]. 人工晶体学报, 2004, 33(4): 471-474. ZHONG Weizhuo, LUO Huasu, HUA Sukun, et al.Crystal surface structure and its growth units of anionic coordination polyhedra[J]. Journal of Synthetic Crystals, 2004, 33(4): 471-481. [18] 马九宏. 起始原粉对烧结氧化铝晶体结构及性能的影响[D]. 武汉: 武汉科技大学, 2023. MA Jiuhong.Effect of initial powder on crystal structure and properties of sintered alumina[D]. Wuhan: Wuhan University of Science and Technology, 2023. [19] 王超. 原料粉末特性和添加剂对氧化铝陶瓷造粒粉性能的影响[D]. 武汉: 武汉科技大学, 2022. WANG Chao.Influence of powder characteristics of raw materials and additives on properties of alumina granules[D]. Wuhan: Wuhan University of Science and Technology, 2022. [20] 徐金梦, 张伟儒, 孙峰, 等. 造粒粉体松装密度对氮化硅陶瓷球烧结致密化的影响[J]. 轴承, 2021(12): 39-43. XU Jinmeng, ZHANG Weiru, SUN Feng, et al.Effect of apparent density of granules on sintering densification of Si3N4 ceramic balls[J]. Bearing, 2021(12): 39-43. [21] 王小锋. BeO粉体制备、凝胶注模成型及其烧结的研究[D]. 长沙: 中南大学, 2011. WANG Xiaofeng.Powder synthesization, gelcasting and sintering of BeO[D]. Changsha: Central South University, 2011. [22] 唐海燕, 钟朝位, 张树人, 等. SiO2掺杂99BeO陶瓷的微观结构与性能[J]. 材料开发与应用, 2007, 22(6): 17-19. TANG Haiyan, ZHONG Chaowei, ZHANG Shuren, et al.Microstructure and properties of SiO2-doped high pure beryllium oxide ceramics[J]. Development and Application of Materials, 2007, 22(6): 17-19. [23] 文丹华, 王日初, 朱学卫. 烧结助剂和工艺对BeO陶瓷密度和热导率的影响[J]. 粉末冶金材料科学与工程, 2007, 12(5): 296-300. WEN Danhua, WANG Richu, ZHU Xuewei.Effects of sintering additives and process on density and thermal conductivity of BeO ceramic[J]. Materials Science and Engineering of Powder Metallurgy, 2007, 12(5): 296-300. [24] 霍上清. 多孔氧化铝的制备及其介电和热学性能研究[D]. 石家庄: 石家庄铁道大学, 2024. HUO Shangqing.Preparation of porous alumina and its dielectric and thermal properties[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2024.