Abstract:As an alternative technology for electroplating and thermal spraying, extreme high-speed laser cladding technology has attracted more and more attention since its inception. The technical principle of extreme high-speed laser cladding was clarified by comparing with conventional laser cladding. The technical characteristics and advantages were analyzed by comparing with electroplating, thermal spraying, and conventional laser cladding. This work reviewed the current research status of extreme high-speed laser cladding, including equipment, material, process, microstructure, and application, etc., analyzed the shortcomings of this technology, and offered suggestions for the research and application development.
肖明颖, 范振红. 超高速激光熔覆技术研究现状及发展展望[J]. 粉末冶金材料科学与工程, 2024, 29(3): 151-161.
XIAO Mingying, FAN Zhenhong. Research status and development prospect of extreme high-speed laser cladding technology. Materials Science and Engineering of Powder Metallurgy, 2024, 29(3): 151-161.
[1] 陈志良, 周建民, 蒋晓璐, 等. 典型电镀污染场地重金属污染特征与环境风险评价[J]. 环境工程技术学报, 2014, 4(1): 80-85. CHEN Zhiliang, ZHOU Jianmin, JIANG Xiaolu, et al.Pollution characteristics and environmental risk assessment of heavy metals in typical electroplating contaminated site[J]. Journal of Environmental Engineering Technology, 2014, 4(1): 80-85. [2] CHEN H, TENG Y, LU S, et al.Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015, 512: 143-153. [3] 李长久. 热喷涂技术应用及研究进展与挑战[J]. 热喷涂技术, 2019, 10(4): 1-22. LI Changjiu.Applications, research progresses and future challenges of thermal spray technology[J]. Thermal Spray Technology, 2019, 10(4): 1-22. [4] 刘艳红, 张迎春, 葛昌纯. 金属钨涂层制备工艺的研究进展[J]. 粉末冶金材料科学与工程, 2011, 16(3): 315-322. LIU Yanhong, ZHANG Yingchun, GE Changchun.Research progresses on preparation technologies of tungsten coating[J]. Materials Science and Engineering of Powder Metallurgy, 2011, 16(3): 315-322. [5] KHOR K A, YU L G.Global research trends in thermal sprayed coatings technology analyzed with bibliometrics tools[J]. Journal of Thermal Spray Technology, 2015, 24(8): 1346-1354. [6] 邱星武, 李刚, 邱玲. 激光熔覆技术发展现状及展望[J]. 稀有金属与硬质合金, 2008, 36(3): 54-57. QIU Xingwu, LI Gang, QIU Ling.The latest development and prospects of laser cladding technology[J]. Rare Metals and Cemented Carbides, 2008, 36(3): 54-57. [7] 张凯, 陈小明, 张磊, 等. 激光熔覆制备耐磨耐蚀涂层技术研究进展[J]. 粉末冶金材料科学与工程, 2019, 24(4): 308-314. ZHANG Kai, CHEN Xiaoming, ZHANG Lei, et al.Research progress of wear-resistant and corrosion-resistant coatings prepared by laser cladding[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4): 308-314. [8] KELBASSA I, GASSER A, MEINERS W, et al.High speed LAM[C]//HINDUJA S, LI L. Proceedings of the 37th International MATADOR 2012 Conference. London: Springer, 2013: 381-385. [9] RAYKIS O.Alternative with a future: high-speed laser metal deposition replaces hard chrome plating[J]. Laser Technik Journal, 2017, 14(1): 28-30. [10] SCHOPPHOVEN T, GASSER A, BACKES G.EHLA: extreme high-speed laser material deposition[J]. Laser Technik Journal, 2017, 14(4): 26-29. [11] SCHOPPHOVEN T, GASSER A, WISSENBACH K, et al.Investigations on ultra-high-speed laser material deposition a alternative for hard chrome plating and thermal spraying[J]. Journal of Laser Applications, 2016, 28(2): 022501. [12] 王豫跃, 牛强, 杨冠军, 等. 超高速激光熔覆技术绿色制造耐蚀抗磨涂层[J]. 材料研究与应用, 2019, 13(3): 165-172. WANG Yuyue, NIU Qiang, YANG Guanjun, et al.Green manufacturing of corrosion-resistant and wear-resistant coatings using ultra high speed laser cladding technology[J]. Materials Research and Application, 2019, 13(3): 165-172. [13] 澹台凡亮, 田洪芳, 陈峰, 等. 高速激光熔覆在27SiMn液压支架立柱上的应用探讨[J]. 新技术新工艺, 2019(3): 52-54. TANTAI Fanliang, TIAN Hongfang, CHEN Feng, et al.Discussion on application of high-speed laser cladding on 27SiMn hydraulic support column[J]. New Technology & New Process, 2019(3): 52-54. [14] 何龙, 王小龙, 谭华, 等. 铝合金表面激光熔覆强化涂层组织与性能研究现状[J]. 热加工工艺, 2016, 45(2): 28-33. HE Long, WANG Xiaolong, TAN Hua, et al.Research status in microstructure and property of laser cladding coatings on aluminum alloys surface[J]. Hot Working Technology, 2016, 45(2): 28-33. [15] 赵聪硕, 邢志国, 王海斗, 等. 铁碳合金表面激光熔覆的研究进展[J]. 材料导报, 2018, 32(2): 418-426. ZHAO Congshuo, XING Zhiguo, WANG Haidou, et al.Advances in laser cladding on the surface of iron carbon alloy matrix[J]. Materials Reports, 2018, 32(2): 418-426. [16] CHEN H S, TURNBULL D.Formation stability and structure of palladium-silicon based alloy glasses[J]. Acta Materialia, 1969, 17(8): 1021-1031. [17] KLENENT W, WILLENS R H, DUWEZ P.Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187(4740): 869-870. [18] LI C, WANG Y, WANG S, et al.Laser surface remelting of plasma-sprayed nanostructured Al2O3-13wt% TiO2 coatings on magnesium alloy[J]. Journal of Alloys and Compounds, 2010, 503(1): 127-132. [19] ZHAO Y Z, SUN J, GUO K, et al.Investigation on the effect of laser re-melting for laser cladding nickel based alloy[J]. Journal of Laser Applications, 2019, 31(2): 022512. [20] 王威, 李俐群, 陶汪, 等. 一种高速激光熔覆与车削复合一体机装置: 201820948939.4[P].2019-01-04. WANG Wei, LI Liqun, TAO Wang, et al. A high-speed laser cladding and turning composite device: 201820948939.4[P].2019-01-04. [21] 段开椋, 韩媛. 一种多功能同轴送粉高速激光喷涂装置: 201721351266.6[P].2018-05-15. DUAN Kailiang, HAN Yuan. A multi-functional coaxial powder feeding high-speed laser spraying device: 201721351266.6[P].2018-05-15. [22] 王豫跃, 李长久, 杨冠军. 一种超高速激光熔覆工艺用同轴送粉头: 201911329533.3[P].2020-04-03. WANG Yuyue, LI Changjiu, YANG Guanjun. A coaxial powder feeding device for ultra high speed laser cladding process: 201911329533.3[P].2020-04-03. [23] 刘昌勇, 柳洁, 李春旺, 等. 一种高速激光熔覆头: 201921240475.2[P].2020-06-05. LIU Changyong, LIU Jie, LI Chunwang, et al. A high-speed laser cladding device: 201921240475.2[P].2020-06-05. [24] 黄昭明, 彭磊. 一种用于高速激光熔覆的环状共轴送粉装置: 201820259544.3[P].2018-11-20. HUANG Zhaoming, PENG Lei. A ring-shaped coaxial powder feeding device for high-speed laser cladding equipment: 201820259544.3[P].2018-11-20. [25] LAMPA C, SMIRNOV I.High speed laser cladding of an iron based alloy developed for hard chrome replacement[J]. Journal of Laser Applications, 2019, 31(2): 022511. [26] 褚巧玲, 仝雄伟, 许帅, 等. 一种超高速激光熔覆用高硬度铁基粉末及其制备方法: 201911149121.1[P].2021-11-16. ZHU Qiaoling, TONG Xiongwei, XU Shuai, et al. A high-hardness Fe-based powder for ultra-high speed laser cladding and its preparation method: 201911149121.1[P].2021-11-16. [27] 贺楠, 吴长龙. 一种高速及超高速激光熔覆用镍基合金粉体: 201910902701.7[P].2019-11-22. HE Nan, WU Changlong. A Ni-based alloy powder for high-speed and ultra high speed laser cladding: 201910902701.7[P].2019-11-22. [28] 王淼辉, 葛学元, 范斌. 一种用于超高速激光熔覆的颗粒增强铁基金属粉末: 201711406904.4[P].2018-11-27. WANG Miaohui, GE Xueyuan, FAN Bin. A particle reinforced Fe-based metal powder for ultra high speed laser cladding: 201711406904.4[P].2018-11-27. [29] 王淼辉, 葛学元, 范斌. 一种用于超高速激光熔覆的颗粒增强镍基金属粉末: 201711405737.1[P].2018-06-08. WANG Miaohui, GE Xueyuan, FAN Bin. A particle reinforced Ni-based metal powder for ultra high speed laser cladding: 201711405737.1[P].2018-06-08. [30] 王淼辉, 葛学元, 范斌. 一种用于超高速激光熔覆的颗粒增强钴基金属粉末: 201711405739.0[P].2018-06-08. WANG Miaohui, GE Xueyuan, FAN Bin. A particle reinforced Co-based metal powder for ultra high speed laser cladding: 201711405739.0[P].2018-06-08. [31] 王淼辉, 葛学元, 范斌. 一种实现超高速激光熔覆涂层组织性能调控的方法: 202310173448.2[P].2023-09-22. WANG Miaohui, GE Xueyuan, FAN Bin. A method for controlling the microstructure and properties of ultra high speed laser clad coatings: 202310173448.2[P].2023-09-22. [32] LIU C Y, LIN J N.Thermal processes of a powder particle in coaxial laser cladding[J]. Optics and Laser Technology, 2003, 35(2): 81-86. [33] IBARRA-MEDINA J, PINKERTON A J, SCHMIDT M, et al.A CFD model of the laser, coaxial powder stream and substrate interaction in laser cladding[J]. Physics Procedia, 2010, 5: 337-346. [34] KORUBA P, REINER J.Thermal imaging of laser powder interaction zone in ultra-high speed laser cladding process[C]//VRANA J. 14th Quantitative Infra Red Thermography Conference. Berlin: Deutsche Gesellschaft Fuer Zerstoerungsfreie Pruefung, 2018: 253-260. [35] SCHOPPHOVEN T, PIRCH N, MANN S, et al.Statistical/numerical model of the powder-gas jet for extreme high-speed laser material deposition[J]. Coatings, 2020, 10(4): 416. [36] 李俐群, 申发明, 周远东, 等. 超高速激光熔覆与常规激光熔覆431不锈钢涂层微观组织和耐蚀性的对比[J]. 中国激光, 2019, 46(10): 174-183. LI Liqun, SHEN Faming, ZHOU Yuandong, et al.Comparison of microstructure and corrosion resistance of 431 stainless steel coatings prepared by extreme high-speed laser cladding and conventional laster cladding[J]. Chinese Journal of Lasers, 2019, 46(10): 174-183. [37] LI L Q, SHEN F M, ZHOU Y D, et al.Comparative study of stainless steel AISI 431 coatings prepared by extreme-high-speed and conventional laser cladding[J]. Journal of Laser Applications, 2019, 31(4): 042009. [38] SHEN B W, DU B R, WANG M H, et al.Comparison on microstructure and properties of stainless steel layer formed by extreme high-speed and conventional laser melting deposition[J]. Frontiers in Materials, 2019, 6: 00248. [39] LI T C, ZHANG L L, BULTEL G G P, et al. Extreme high-speed laser material deposition (EHLA) of AISI 4340 steel[J]. Coatings, 2019, 9(12): 778. [40] LOU L Y, ZHANG Y, JIA Y J, et al.High speed laser cladded Ti-Cu-NiCoCrAlTaY burn resistant coating and its oxidation behavior[J]. Surface & Coatings Technology, 2020, 392: 125697. [41] SCHOPPHOVEN T, SCHLEIFENBAUM J H, THARMAKULASINGAM S, et al.Setting sights on a 3D process[J]. Photonics Views, 2019, 16(5): 64-68. [42] 邹斌华. 超高速激光熔覆技术在液压支柱上的应用[J]. 中国表面工程, 2020, 33(6): 2. ZOU Binhua.Application of ultra high speed laser cladding technology on hydraulic props[J]. China Surface Engineering, 2020, 33(6): 2. [43] 葛学元, 郭瑞峰, 王淼辉, 等. 一种采用超高速激光熔覆技术修复核电海水泵轴的方法: 201711403823.9[P].2018-06-15. GE Xueyuan, GUO Ruifeng, WANG Miaohui, et al. A repair method for nuclear seawater pump shaft using ultra high speed laser cladding: 201711403823.9[P].2018-06-15. [44] 王淼辉, 申博文, 范斌, 等. 一种采用超高速率激光熔覆方法制造的抽油杆: 201711403825.8[P].2018-09-21. WANG Miaohui, SHEN Bowen, FAN Bin, et al. A manufacturing method of sucker rods by ultra high speed laser cladding: 201711403825.8[P].2018-09-21.