Abstract:Based on MM-1000 friction and wear testing machine, the temperature field and heat distribution of different friction pairs were evaluated combining test and simulation. Using Workbench platform, the finite element simulations were implemented on pertaining models built in actual scale. Under various initial rotation speed, by inspecting friction temperature fields of brake rings made of carbon-ceramic, alloyed steel and cast steel, against lab-made copper-based powder metallurgy ring respectively, heat distributions in each brake process were compared and analyzed. The results show that the temperature field of carbon ceramic ring is quite different from that of cast steel ring and alloy steel ring. The temperature rise on the friction surface of the carbon ceramic ring is much higher than that of the alloy steel ring and the cast steel ring, and the axial direction also shows a large temperature rise and temperature gradient. Meanwhile, the copper-based friction ring paired with the carbon-ceramic ring receives more heat distribution and shows a greater temperature rise, which puts forward higher requirements on the high-temperature friction and wear properties of the mating materials paired with carbon-ceramic materials.
赵恒阳, 林雪杨, 刘如铁, 陈洁, 李政舟, 熊翔, 廖宁. 三种制动环与铜基摩擦材料配副的摩擦温度场研究[J]. 粉末冶金材料科学与工程, 2022, 27(2): 129-139.
ZHAO Hengyang, LIN Xueyang, LIU Rutie, CHEN Jie, LI Zhengzhou, XIONG Xiang, LIAO Ning. Friction temperature field analysis of three brake rings paired with copper-based friction materials. Materials Science and Engineering of Powder Metallurgy, 2022, 27(2): 129-139.
[1] 陈凯, 王秋旺, 林原胜, 等. 高速摩擦过程中热量产生及耗散机理研究[J]. 工程热物理学报, 2020, 41(11): 2807-2812. CHEN Kai, WANG Qiuwang, LIN Yuansheng, et al.Study on the mechanism of heat generation and dissipation during high-speed friction[J]. Journal of Engineering Thermophysics, 2020, 41(11): 2807-2812. [2] ZHAO X, HAMILTON M, SAWYER W G, et al.Thermally activated friction[J]. Tribology Letters, 2007, 27(1): 113-117. [3] 李继山, 李和平, 林祜亭. 高速列车制动盘裂纹现状调查分析[J]. 铁道机车车辆, 2005, 25(6): 3-5. LI Jishan, LI Heping, LIN Guting.Crack investigation and analysis on the brake disc of high speed train[J]. Railway Locomotive and Car, 2005, 25(6): 3-5. [4] 李政舟, 刘如铁, 林雪杨, 等. SiO2/ZrO2复合陶瓷组元对铜基摩擦材料摩擦磨损性能的影响[J]. 粉末冶金材料科学与工程, 2021, 26(2): 108-116. LI Zhengzhou, LIU Rutie, LIN Xueyang, et al.Effects of SiO2/ZrO2 composite ceramic components on friction and wear properties of copper-based friction materials[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(2): 108-116. [5] HONG H, KIM M, LEE H, et al.A study on an analysis model for the thermo-mechanical behavior of a solid disc brake for rapid transit railway vehicles[J]. Journal of Mechanical Science and Technology, 2018, 32(7): 3223-3231. [6] KUCIEJ M, GRZES P, WASILEWSKI P.A comparison of 3D and 2D FE frictional heating models for long and variable applications of railway tread brake[J]. Materials, 2020, 13(21): 4846-4867. [7] ALI B.Finite element analysis of automotive disk brake and pad in frictional model contact[J]. International Journal of Manufacturing Materials and Mechanical Engineering, 2015, 5(4): 32-62. [8] 王兴. 轿车制动器紧急制动瞬态温度场仿真分析[J]. 安徽科技学院学报, 2018, 32(3): 93-100. WANG Xing.Simulation analysis of emergency braking transient temperature field of car brake[J]. Journal of Anhui Science and Technology University, 2018, 32(3): 93-100. [9] 姜大鑫, 韩超, 曹正林, 等. 盘式制动器多物理场结构仿真分析[C]// 2020中国汽车工程学会年会论文集. 北京: 中国汽车工程学会, 2020. JIANG Daxin, HAN Chao, CAO Zhenglin, et al.Simulation analysis of muti-physics structure disk brake[C]// Proceedings of the 2020 China Society of Automotive Engineering Annual Meeting. Beijing: China Society of Automotive Engineers, 2020. [10] ADAMOWICZ A, GRZES P.Analysis of disc brake temperature distribution during single braking under non-axisymmetric load[J]. Applied Thermal Engineering, 2011, 31(6/7): 1003-1012. [11] GRZES P, OLIFERUK W, ADAMOWICZ A, et al.The numerical-experimental scheme for the analysis of temperature field in a pad-disc braking system of a railway vehicle at single braking[J]. International Communications in Heat and Mass Transfer, 2016, 75(7): 1-6. [12] 盛欢, 王泽华, 邵佳, 等. 高速列车制动盘材料的研究现状与展望[J]. 机械工程材料, 2016, 40(1): 1-5, 42. SHENG Huan, WANG Zehua, SHAO Jia, et al.Research status and prospect of brake disc materials for high-speed train[J]. Materials for Mechanical Engineering, 2016, 40(1): 1-5, 42. [13] 徐兴亚, 张立同, 成来飞, 等. 碳陶刹车材料的研究进展[J]. 航空制造技术, 2014(6): 100-103, 108. XU Xinagya, ZHANG Litong, CHENG Laifei, et al.Research progress of carbon/silicon carbide brake materials[J]. Aeronautical Manufacturing Technology, 2014(6): 100-103, 108. [14] FAN S W, ZHANG L T, CHENG L F, et al.Microstructure and frictional properties of C/SiC brake materials with sandwich structure[J]. Ceramics International, 2011, 37(7): 2829-2835. [15] FAN S W, SUN H D, MA X, et al.Microstructure and properties of a new structure-function integrated C/C-SiC brake material[J]. Journal of Alloys and Compounds, 2018, 769(1): 239-249. [16] GOO B C, CHO I S.Microstructural analysis and wear performance of carbon-fiber-reinforced SiC composite for brake pads[J]. Materials, 2017, 10(7): 701-708. [17] ZHAO S, YAN Q, PENG T, et al. The braking behaviors of Cu-based powder metallurgy brake pads mated with C/C-SiC disk for high-speed train[J]. Wear, 2020, 448/449: 203237. [18] 付强. 碳陶制动盘的热力耦合分析与结构优化设计[D]. 济南: 山东大学, 2020. FU Qiang.Thermomechanical coupling analysis and structural optimization design of C/SiC brake Disc[D]. Jinan: Shandong University, 2020. [19] ZHANG C Q, ZHANG L T, ZENG Q F, et al.Simulated three-dimensional transient temperature field during aircraft braking for C/SiC composite brake disc[J]. Materials and Design, 2011, 32(5): 2590-2595. [20] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 237-259. YANG Shiming, TAO Wenquan.Heat Transfer[M]. 4th ed. Beijing: Higher Education Press, 2006: 237-259. [21] 陆明炯. 实用机械材料工程手册[M]. 沈阳: 辽宁科学技术出版社, 2004: 3-58. LU Mingjiong.Handbook of Practical Mechanical Materials Engineering[M]. Shenyang: Liaoning Science and Technology Press, 2004: 3-58. [22] 惠阳, 刘贵民, 杜建华, 等. 基于第三体的制动材料摩擦磨损行为研究进展[J]. 材料导报, 2021, 35(19): 19153-19160. HUI Yang, LIU Guimin, DU Jianhua, et al.Research progress on friction and wear behavior of brake materials based on he third body[J]. Materials Reports, 2021, 35(19): 19153-19160. [23] MAJCHERCZAK D, DUFRENOY P, NAIT-ABDELAZIZ M.Third body influence on thermal friction contact problems: application to braking[J]. Journal of Tribology, 2005, 127(1): 89-95.