Abstract:To explore the synergistic effect of the hard phase and the ductile binder phase in cemented carbide substrates to the coating, WC-10Co-0.65Cr3C2-0.35VC (10Co) with hard phase + binder phase structure, WC-6Mo2C-0.68Cr3C2- 0.37VC (bWC) and 85.1Co-9.2W-4.7Cr3C2-1.0VC (CoW) alloys were prepared. Al0.55Ti0.45N coating around 5 μm in thickness was deposited by direct current magnetron sputtering technology. The failure modes of AlTiN coated alloys during scratch test were determined by the magnitude of critical loads LC1 and LC2 and the difference value between LC1 and LC2. LC1 and LC2 are the characterization parameters of the cohesive failure resistance of the film and the adhesion strength between the film and the substrate, respectively. The related failure mechanism was investigated by finite element analysis of the stress distribution in the coating during scratch test. Further, the effects of the WC grain size and the cobalt content in the cemented carbide substrates on the stress distribution in the coating during scratch test were also investigated. The results show that the coated alloy with ductile CoW substrate has the lowest value of LC1 and LC2. The coated alloy with hard bWC substrate has the highest LC2 and the highest difference value between LC1 and LC2. The coated 10Co alloy has the highest LC1 and the lowest LC1 and LC2 difference. The young modulus ratio of the film and the substrate and the hardness of substrate are the key factors affecting LC1 and LC2. Decreasing the grain size and choosing moderate cobalt content in cemented carbide substrate facilitate the synchronous improvement of LC1 and LC2.
张华栋, 张立, 陈宜, 罗国凯, 肖桥平, 钟志强. AlTiN涂层合金划痕测试的失效形式及其失效机理的有限元分析[J]. 粉末冶金材料科学与工程, 2018, 23(5): 445-453.
ZHANG Huadong, ZHANG Li, CHEN Yi, LUO Guokai, XIAO Qiaoping, ZHONG Zhiqiang. Failure modes of AlTiN coated alloys during scratch test and the related mechanism by finite element analysis. Materials Science and Engineering of Powder Metallurgy, 2018, 23(5): 445-453.
[1] HAUBNER R, LESSIAK M, PITONAK R, et al.Evolution of conventional hard coatings for its use on cutting tools[J]. International Journal of Refractory Metals and Hard Materials, 2017, 62(1): 210-218. [2] ORTNER H M, ETTMAYER P, KOLASKA H, et al.The history of the technological progress of hardmetals[J]. International Journal of Refractory Metals and Hard Materials, 2014, 44(1): 148-159. [3] 潘晨曦, 陈康华, 徐银超,等. 添加Cu对PVD AlTiN涂层组织结构和性能的影响[J]. 粉末冶金材料科学与工程, 2016, 21(5): 717-721. PAN Chenxi, CHEN Kanghua, XU Yinchao, et al.Effect of adding Cu on structure and cutting performance of PVD AlTiN coating[J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(5): 717-721. [4] WANG C F, SHIH-FU O U, CHIOU S Y. Microstructures of TiN, TiAlN and TiAlVN coatings on AISI M2 steel deposited by magnetron reactive sputtering[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(8): 2559-2565. [5] 牛瑞丽, 李金龙, 刘栓, 等. 偏压对高速钢表面AlTiN涂层结构与性能的影响[J]. 中国有色金属学报, 2016, 26(12): 2564-2572. NIU Ruili, LI Jinlong, LIU Shuan, et al.Effect of bias on structure and properties of AlTiN coating deposited on high-speed steel[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(12): 2564-2572. [6] 徐银超, 陈康华, 王社权, 等. TiN和TiAlN涂层硬质合金的氧化和切削性能[J]. 粉末冶金材料科学与工程, 2011, 16(3): 425-430. XU Yinchao, CHEN Kanghua, WANG Shequan, et al.Oxidation and cutting properties of TiN and TiAlN coated cemented carbide[J]. Materials Science and Engineering of Powder Metallurgy, 2011, 16(3): 425-430. [7] 朱丽慧, 胡涛, 宋诚, 等. Si、Cr的加入对TiAlN涂层热稳定性能的影响[J]. 硬质合金, 2015, 32(6): 359-363. ZHU Lihui, HU Tao, SONG Cheng, et al.Effect of Si and Cr addition on thermal stability of TiAlN coatings[J]. Cemented Carbide, 2015, 32(6): 359-363. [8] 邱龙时, 朱晓东, 鲁莎, 等. 基于弹塑性滚动接触疲劳法评价硬质薄膜结合强度[J]. 真空科学与技术学报, 2015, 35(11): 1380-1384. QIU Longshi, ZHU Xiaodong, LU sha, et al. Evaluation of hard-coating/substrate interfacial adhesion in rolling contact fatigue method under elastic-plastic deformation[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(11): 1380-1384. [9] 李河清, 蔡殉, 马峰, 等. 压痕法测定薄膜(涂层)的界面结合强度[J]. 机械工程材料, 2002, 26(4): 11-13. LI Heqing, CAI Xun, MA Feng, et al.Determination of the interfacial bonding strength of thin films and coatings using indentation method[J]. Materials for Mechanical Engineering, 2002, 26(4): 11-13. [10] 唐辉, 王欣宇, 于德珍, 等. TA2纯钛微弧氧化陶瓷膜层的颜色和性能[J]. 材料研究学报, 2010, 24(4): 395-400. TANG Hui, WANG Xinyu, YU Dezheng, et al.On the color properties of the coatings on titanium by micro-arc oxidation[J]. Chinese Journal of Materials Research, 2010, 24(4): 395-400. [11] KATARIA S, KUMAR N, DASH S, et al.Evolution of deformation and friction during multimode scratch test on TiN coated D9 steel[J]. Surface and Coatings Technology, 2010, 205(3): 922-927. [12] 陈响明, 易丹青, 李秀萍, 等. 硬质合金复合涂层的结合强度与失效机理[J]. 粉末冶金材料科学与工程, 2011, 16(3): 464-470. CHEN Xiangming, YI Danqing, LI Xiuping, et al.Bonding strength and failure mechanism of cemented carbide with multilayer coatings[J]. Cemented Carbide, 2011, 16(3): 464-470. [13] GONG M, CHEN J, DENG X, et al.Sliding wear behavior of TiAlN and AlCrN coatings on a unique cemented carbide substrate[J]. International Journal of Refractory Metals and Hard Materials, 2017, 69(1): 209-214. [14] ZHANG Li, SHAN Cheng, CHEN Shu, et al.Hot pressing densification of WC-MoxC binderless carbide[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8): 2027-2031. [15] CHEN Yi, ZHANG Li, ZHU Junjie, et al.Phase interfaces between AlTiN and WC/Mo2C in WC-Mo2C substrate and the related characteristics[J]. International Journal of Refractory Metals and Hard Materials, 2018, 72: 323-331. [16] ZHANG Li, XIE Mingwei, CHENG Xin, et al.Micro characteristics of binder phases in WC-Co cemented carbides with Cr-V and Cr-V-RE additives[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36(1): 211-219. [17] ROGSTRÖM L. High temperature behavior of arc evaporated ZrAlN and TiAlN thin films[D]. Sweden: Linköping University, 2012: 6-7. [18] ROA J J, JIMÉNEZ-PIQUÉ E, TARRAGÓ J M, et al. Berkovichnano indentation and deformation mechanisms in a hardmetal binder-like cobalt alloy[J]. Materials Science and Engineering, 2015, A621: 128-132. [19] NINO A, TANAKA A, SUGIYAMA S, et al.Indentation size effect for the hardness of refractory carbides[J]. Materials Transactions, 2010, 51(9): 1621-1626. [20] 沈观林, 胡更开. 复合材料力学[M]. 上海: 上海交通大学出版社, 1988: 201-202. SHEN Guanlin, HU Gengkai.Mechanics of Composite Materials [M]. Shanghai: Shanghai Jiao Tong University Press, 1988: 201-202. [21] DAN M, KAZAKEVICH M, SROLOVITZ D J, et al.Nanoindentation size effect in single-crystal nanoparticles and thin films: A comparative experimental and simulation study[J]. Acta Materialia, 2011, 59(6): 2309-2321. [22] BEISS P, RUTHARDT R, WARLIMONT H. Powder Metallurgy Data.Refractory, Hard and Intermetallic Materials[M]. Springer-Verlag. 2002. [23] KLÜNSNER T, MARSONER S, EBNER R, et al. Effect of microstructure on fatigue properties of WC-Co hard metals[J]. Procedia Engineering, 2010, 2(1): 2001-2010. [24] ÖZDEN U A, BEZOLD A, BROECKMANN C.Numerical simulation of fatigue crack propagation in WC/Co based on a continuum damage mechanics approach[J]. Procedia Materials Science, 2014, 3(1): 1518-1523. [25] BENSON M L, LOAW P K, CHOO H, et al.Strain-induced phase transformation in a cobalt-based superalloy during different loading modes[J]. Materials Science and Engineering, 2011, A528(18): 6051-6058. [26] CHEN F L, HE X, PRIETO-MUÑOZ P A, et al. Opening-mode fractures of a brittle coating bonded to an elasto-plastic substrate[J]. International Journal of Plasticity, 2015, 67(1): 171-191. [27] KIM S I, HER J U, JANG Y C, et al.Experimental and finite element analysis for fracture of coating layer of galvannealed steel sheet[J]. The Transactions of Nonferrous Metals Society of China, 2011, 21(1): 111-116. [28] GANT A J, GEE M G.Wear modes in slurry jet erosion of tungsten carbide hardmetals: Their relationship with microstructure and mechanical properties[J]. International Journal of Refractory Metals and Hard Materials, 2015, 49(1): 192-202.