Abstract:Taking NSFR490 fire-resistant steel as an example, the changes of its metallographic organization and mechanical properties at different normalizing temperatures were studied. The results show that under the normalizing treatment for 730-820 ℃, the strength decreases with the increase of temperature, but it still meets the engineering application standard. Otherwise, the plasticity is improved (elongation rate increased from 20% to 26%). The tensile test at 600 ℃ satisfy the requirement of high temperature yield strength greater than 2/3 of room temperature yield strength. Further observation of the microstructure of NSFR 490 fire-resistant steel shows that the overall microstructure of the alloy has little change under a high temperature process of 600 ℃, and only the grain size has grown slightly, which is consistent with the mechanical properties of refractory steel at high temperature (yield strength decreased from 315 MPa to 292 MPa). At last, combined with the practical engineering application of the refractory steel, the displacement- temperature curve and failure critical temperature point 600 ℃ of the material are obtained by using ANSYS software.
陈俊, 罗恒勇, 林申正. 热处理工艺对建筑用490 MPa级耐火钢力学性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(3): 220-225.
CHEN Jun, LUO Hengyong, LIN Shenzheng. Effect of heat treatment technology on the mechanical property of 490 MPa grade fire-resistance steel. Materials Science and Engineering of Powder Metallurgy, 2019, 24(3): 220-225.
[1] 赵雷超, 孙斌堂, 黄运华, 等. 热轧态与回火态AH80DB低碳贝氏体钢组织与冲击韧性[J]. 工程科学学报, 2016, 38(3): 357-363. ZHAO Leichao, SUN Bintang, HUANG Yunhua, et al.Microstructure and impact toughness of hot rolled and tempered low carbon bainitic steel AH80DB[J]. Engineering Journal, 2016, 38(3): 357-363. [2] 杨卫芳. 正火处理对建筑耐火钢组织和性能的影响[J]. 热加工工艺, 2017, 46(18): 224-227. YANG Weifang.Influence of normalizing treatment on microstructure and properties of building fire-resistance steel for construction[J]. Hot Working Technology, 2017, 46(18): 224-227. [3] 曹双梅, 李聪, 刘文庆. Nb-V复合对耐火钢力学性能的影响[J]. 材料热处理学报, 2013, 34(2): 47-51. CAO Shuangmei, LI Chong, LIU Wenqing.Effect of niobium and vanadium on mechanical properties of fire-resistance steels[J]. Transactions of Materials and Heat Treatment, 2013, 34(2): 47-51. [4] 朱世佳. 微量元素对建筑用耐火钢的组织与性能的影响[J]. 热加工工艺, 2018, 47(14): 68-71. ZHU Shijia.Effect of microelements on structure and properties of fire-resistant steel for construction[J]. Hot Working Technology, 2018, 47(14): 68-71. [5] 杨晓敏. 建筑用耐火钢组织和力学性能的研究[J]. 热加工工艺, 2016, 45(6): 60-62. YANG Xiaomin.Study on microstructure and mechanical properties of fire-resistant steel for construction[J]. Hot Working Technology, 2016, 45(6): 60-62. [6] 殷海荣, 李阳. 耐火钢耐火机理的研究[J]. 钢铁研究, 2008(2): 59-61. YIN Hairong, LI Yang.Study on fire resistance mechanism of fire-resistant steel[J]. Iron and Steel Research, 2008(2): 59-61. [7] 郭艳坤, 刘成才. 热处理工艺对建筑用无Mo耐火钢组织与性能的影响[J]. 金属热处理, 2017, 42(10): 96-99. GUO Yankun, LIU Chengcai.Influence of heat treatment process on microstructure and properties of Mo-free fire- resistant steel for buliding[J]. Heat Treatment of Metals, 2017, 42(10): 96-99. [8] WAN R, SUN F, ZHANG L, et al.Effect of Mo addition on strength of fire-resistant steel at elevated temperature[J]. Journal of Materials Engineering & Performance, 2014, 23(8): 2780-2786. [9] YANG K C, LEE H H, CHAN O.Experimental study of fire-resistant steel H-columns at elevated temperature[J]. Journal of Constructional Steel Research, 2006, 62(3): 544-553. [10] CHEN X M, SONG S H, WENG L Q, et al.Solute grain boundary segregation during high temperature plastic deformation in a Cr-Mo low alloy steel[J]. Materials Science & Engineering A, 2011, 528(25): 7663-7668. [11] OLASOLO M, URANGA P, RODRIGUEZ-IBABE J M, et al. Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb-V microalloyed steel[J]. Materials Science and Engineering: A, 2011, 528(6): 2559-2569. [12] 冉华安. 回火工艺对耐火钢力学性能的影响[J]. 热加工工艺, 2014, 43(4): 214-216. RAN Huaan.Effect of tempering process on mechanical properties of fire-resistant steel[J]. Hot Working Technology, 2014, 43(4): 214-216. [13] WEI Junhui, ZHANG Yongjian, SHAO Chengwei, et al.Effect of cooling rate and vanadium content on the microstructure and hardness of medium carbon forging steel[J]. Journal of Materials Science & Technology, 2016, 1(6): 1-7. [14] DING J, LI G Q, SAKUMOTO Y.Parametric studies on fire resistance of fire-resistant steel research[J]. Journal of Constructional Steel Research, 2004, 60(7): 1007-1027. [15] RAMESH S, DHANALAKSHMI B, CHANDRA SEKHAR B, et al.Effect of Mn/Co substitutions on the resistivity and dielectric properties of nickel-zinc ferrites[J]. Ceramics International, 2016, 42: 9591-9598. [16] SHA W. KELLY F S. Guo Z X.Microstructure and properties of nippon fire-resisitant steels[J]. Journal of Materials Engineering and Performance, 1999(8): 606-609. [17] 潘小强, 左汝林, 党莹, 等.Mo-V耐火钢显微组织分析研究[J]. 物理测试, 2007, 25(5): 9-13. PAN Xiaoqiang, ZUO Rulin, DANG Ying, et al.Study on microstructure of fire-resistant steels containing molybdenum and vanadium[J]. Physics Examination and Testing, 2007, 25(5): 9-13. [18] HU J, DU L X, WAMH J J.Effect of V intragranular ferrite nucleation of high Ti bearing steel[J]. Scripta Material, 2013, 68(12): 953-956. [19] 田海林, 张祺, 武昭妤, 等. 热处理工艺对建筑用高强耐火钢力学性能的影响[J]. 热加工工艺, 2016, 45(24): 215-218. TIAN Haining, ZHANG Qi, WU Zhaoyu, et al.Effect of heat treatment proess on mechanical properties of high strength fire-resistant steel for building[J]. Hot Working Technology, 2016, 45(24): 215-218. [20] 涂振飞. ANSYS有限元分析工程应用实例教程[M]. 北京: 中国建筑工业出版社, 2010. TU Zhenfei.ANSYS Finite Element Analysis Engineering Application Example Course[M]. Beijing: China Architecture & Building Press, 2010.