Crystal plasticity simulation studying the effects of cold rolling deformation and heat treatment on the texture and planar anisotropy of 7085 aluminum alloy
TAN Xin, ZHANG Zhichen, TANG Sai, XIAO Daihong, LIU Wensheng
Powder Metallurgy Research Institute, Central South University, Changsha 410083, China
Abstract:The effects of cold rolling deformation and heat treatment on texture composition and plastic strain ratio r of 7085 aluminum alloy were investigated by XRD, EBSD, and tensile experiments combined with crystal plasticity simulation. The effects of five ideal textures on average plastic strain ratio and planar anisotropy index |Δr| were analyzed. The results show that when the deformation increases from 50% to 80% during cold rolling, the volume fraction of S texture increases the most (10.9%), the volume fraction of Copper texture increases the least (2.9%), and the recrystallization texture changes little. After heat treatment, the Brass, S, and Copper textures of the alloys are weakened, when the deformation amount is 80%, the S texture decreases the most (15.9%) and the Copper texture decreases the least (2.4%); the Cube texture increases, and the larger the deformation is, the more significant the increase is; the Goss texture change is not obvious. The |Δr| value of cold-rolled alloy is higher than that of aged alloy; with the increase of cold rolling deformation, the value of cold rolled alloy increases gradually, the value of aged alloy decreases gradually, and the |Δr| value increases gradually. Rolled texture Δr<0 while recrystallization texture Δr>0. The Goss texture mainly provides resistance to deformation in the 90° direction, while the Cube texture has little difference in r value in the three directions.
谭鑫, 张智晨, 唐赛, 肖代红, 刘文胜. 晶体塑性模拟研究冷轧变形与热处理对7085铝合金织构及平面各向异性的影响[J]. 粉末冶金材料科学与工程, 2024, 29(6): 464-476.
TAN Xin, ZHANG Zhichen, TANG Sai, XIAO Daihong, LIU Wensheng. Crystal plasticity simulation studying the effects of cold rolling deformation and heat treatment on the texture and planar anisotropy of 7085 aluminum alloy. Materials Science and Engineering of Powder Metallurgy, 2024, 29(6): 464-476.
[1] 张王军, 李云, 吴玉娜, 等. 超高强7XXX系铝合金的研究现状及发展趋势[J]. 现代交通与冶金材料, 2023, 3(3): 52-60. ZHANG Wangjun, LI Yun, WU Yuna, et al.Research status and development trends of ultra-high-strength 7XXX series aluminum alloys[J]. Modern Transportation and Metallurgical Materials, 2023, 3(3): 52-60. [2] 任伟才, 王金花, 丛福官, 等. 7XXX系超高强铝合金板材各向异性的研究现状[J]. 轻合金加工技术, 2019, 47(6): 9-19. REN Weicai, WANG Jinhua, CONG Fuguan, et al.Research status of anisotropy of 7XXX series ultra-high-strength aluminum alloy sheets[J]. Light Alloy Processing Technology, 2019, 47(6): 9-19. [3] SIDOR J, MIROUX A, PETROV R, et al.Microstructural and crystallographic aspects of conventional and asymmetric rolling processes[J]. Acta Materialia, 2008, 56(11): 2495-2507. [4] GUO M X, ZHU J, ZHANG Y, et al.The formation of bimodal grain size distribution in Al-Mg-Si-Cu alloy and its effect on the formability[J]. Materials Characterization, 2017, 132: 248-259. [5] HU J G, IKEDA K, MURAKAMI T.Effect of texture components on plastic anisotropy and formability of aluminium alloy sheets[J]. Journal of Materials Processing Technology, 1998, 73(1/2/3): 49-56. [6] 黄光杰, 汪凌云. 3104铝合金板材织构和制耳行为研究[J]. 重庆大学学报(自然科学版), 2000, 23(3): 20-22. HUANG Guangjie, WANG Lingyun.Research on texture and ear forming behavior of 3104 aluminum alloy plate[J]. Journal of Chongqing University (Natural Science Edition), 2000, 23(3): 20-22. [7] ENGLER O.Texture and anisotropy in the Al-Mg alloy AA 5005: part I: texture evolution during rolling and recrystallization[J]. Materials Science and Engineering A, 2014, 618: 654-662. [8] ENGLER O, AEGERTER J.Texture and anisotropy in the Al-Mg alloy AA 5005: part II: correlation of texture and anisotropic properties[J]. Materials Science and Engineering A, 2014, 618: 663-671. [9] ROTERS F, EISENLOHR P, HANTCHERLI L, et al.Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications[J]. Acta Materialia, 2010, 58(4): 1152-1211. [10] ZHANG H, DIEHL M, ROTERS F, et al.A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations[J]. International Journal of Plasticity, 2016, 80: 111-138. [11] LIU W, PANG Y.A multi-scale modelling framework for anisotropy prediction in aluminium alloy sheet and its application in the optimisation of the deep-drawing process[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114: 3401-3417. [12] ZHANG Z C, LI Z S, TANG S, et al.Predicting the in-plane mechanical anisotropy of 7085 aluminum alloys through crystal plasticity simulations and machine learning[J]. Materials Today Communications, 2024, 38: 108381. [13] HIELSCHER R, SCHAEBEN H.A novel pole figure inversion method: specification of the MTEX algorithm[J]. Journal of Applied Crystallography, 2008, 41(6): 1024-1037. [14] 章乃俊, 何海铜, 薛菲. 冷轧压下率对3104铝合金织构演变的影响[J]. 宝钢技术, 2022(3): 22-28. ZHANG Naijun, HE Haitong, XUE Fei. Effect of cold rolling reduction rate on the texture evolution of3104 aluminum alloy[J]. Baogang Technology, 2022(3): 22-28. [15] ROTERS F, DIEHL M, SHANTHRAI P, et al.DAMASK: the Düsseldorf advanced material simulation kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale[J]. Computational Materials Science, 2019, 158: 420-478. [16] SHANTHRAJ P, EISENLOHR P, DIEHL M, et al.Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials[J]. International Journal of Plasticity, 2015, 66: 31-45. [17] EISENLOHR P, DIEHL M, LEBENSOHN R A, et al.A spectral method solution to crystal elasto-viscoplasticity at finite strains[J]. International Journal of Plasticity, 2013, 46: 37-53. [18] KRÖNER E. Zur plastischen verformung des vielkristalls[J]. Acta Metallurgica, 1961, 9(2): 155-161. [19] HUTCHINSON J W.Bounds and self-consistent estimates for creep of polycrystalline materials[J]. Proceedings of the Royal Society A, 1976, 348(1652): 101-127. [20] PEIRCE D, ASARO R J, NEEDLEMAN A.Material rate dependence and localized deformation in crystalline solids[J]. Acta Metallurgica, 1983, 31(12): 1951-1976. [21] BROWN S B, KIM K H, ANAND L.An internal variable constitutive model for hot working of metals[J]. International Journal of Plasticity, 1989, 5(2): 95-130. [22] 杨吉. 铝合金高速冷轧及变形过程中微结构与织构的研究[J]. 中国金属通报, 2023(3): 13-15. YANG Ji.Research on microstructure and texture during high-speed cold rolling and deformation of aluminum alloy[J]. China Metal Bulletin, 2023(3): 13-15. [23] 骆新根, 黄咸波, 郭小龙, 等. 冷轧压下率对薄规格取向硅钢冷轧和退火织构的影响[J]. 电工钢, 2019, 1(2): 21-28. LUO Xingen, HUANG Xianbo, GUO Xiaolong, et al.Effect of cold rolling reduction rate on cold rolling and annealing texture of thin gauge oriented silicon steel[J]. Electrical Steel, 2019, 1(2): 21-28. [24] 李万印, 陈亮维, 杨钢, 等. 1235铝合金铸轧坯料在加工过程中的织构演变[J]. 轻金属, 2016(9): 48-52. LI Wanyin, CHEN Liangwei, YANG Gang, et al. Texture evolution of1235 aluminum alloy casting and rolling billets during processing[J]. Light Metals, 2016(9): 48-52. [25] MACKENZIE J K.Second paper on statistics associated with the random disorientation of cubes[J]. Biometrika, 1958, 45(1/2): 229-240. [26] ZHANG S, WANG Q, CHENG X, et al.Static recrystallization behavior and texture evolution during annealing in a cold rolling beta titanium alloy sheet[J]. Metals, 2022, 12(6): 899. [27] 王泽鹏, 张红梅, 付魁军, 等. 压下率对热轧不锈钢复合板组织与性能的影响[J]. 金属热处理, 2016, 41(9): 103-106. WANG Zepeng, ZHANG Hongmei, FU Kuijun, et al.Effect of reduction rate on the structure and properties of hot-rolled stainless steel composite plates[J]. Heat Treatment of Metals, 2016, 41(9): 103-106. [28] 李海斌, 黄庆学, 周存龙, 等. 热轧碳钢/不锈钢复合板界面组织及性能分析[J]. 热加工工艺, 2014, 43(9): 36-39. LI Haibin, HUANG Qingxue, ZHOU Cunlong, et al.Interface structure and performance analysis of hot-rolled carbon steel/stainless steel composite plate[J]. Hot Working Technology, 2014, 43(9): 36-39. [29] 曾周燏, 江姗, 李东晖. TMCP工艺轧制桥梁用不锈钢复合板的组织与性能[J]. 中国冶金, 2017, 27(6): 19-23. ZENG Zhouyu, JIANG Shan, LI Donghui.Microstructure and properties of stainless steel composite plates for bridges rolled by TMCP process[J]. China Metallurgy, 2017, 27(6): 19-23. [30] 曾招芬, 齐文刚, 赵富有, 等. 冷变形对5052铝合金板材力学性能及制耳率的影响[J]. 金属热处理, 2022, 47(10): 208-210. ZENG Zhaofen, QI Wengang, ZHAO Fuyou, et al.Effect of cold deformation on the mechanical properties and ear production rate of 5052 aluminum alloy plates[J]. Heat Treatment of Metals, 2022, 47(10): 208-210. [31] KASEMER M, FALKINGER G, ROTERS F.A numerical study of the influence of crystal plasticity modeling parameters on the plastic anisotropy of rolled aluminum sheet[J]. Modelling and Simulation in Materials Science and Engineering, 2020, 28(8): 085005. [32] WIDIANTARA I P, YANG H W, KIM M J, et al.Plastic anisotropy calculation of severely-deformed Al-Mg-Si alloy considering texture changes in electron backscatter diffraction[J]. Journal of Materials Science & Technology, 2019, 35(7): 1439-1443. [33] LIU Y S, KANG S B, KO H S.Texture and plastic anisotropy of Al-Mg-0.3Cu-1.0Zn alloys[J]. Scripta Materialia, 1997, 37(4): 411-417. [34] ZHAO Q, WAHAB M A, LING Y, et al.Grain-orientation induced stress formation in AA2024 monocrystal and bicrystal using crystal plasticity finite element method[J]. Materials & Design, 2021, 206: 109794. [35] LI Y, XU G, LIU S, et al.Study on anisotropy of Al-Zn-Mg-Sc-Zr alloy sheet[J]. Materials Characterization, 2021, 172: 110904. [36] CHEN P, MAO S C, LIU Y, et al.In-situ EBSD study of the active slip systems and lattice rotation behavior of surface grains in aluminum alloy during tensile deformation[J]. Materials Science and Engineering A, 2013, 580: 114-124.