Finite element simulation study on the process of tungsten-copper powder rolling
CUI Liqun1, HAN Shengli1, SHI Qi1, LI Daren2, HU Jianzhao3, LIU Zuyan3
1. Guangdong Institute of Materials and Processing, National Engineering Research Center of Powder Metallurgy of Titanium & Rare metals, Guangzhou 510650, China; 2. School of Mechanical and Electrical Engineering (School of Standardization), Guangdong Polytechnic Institute, Guangzhou, 510091, China; 3. School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract:The Drucker-Prager/Cap model was used to describe the rolling deformation of tungsten-copper powders,and the corresponding finite element model was established. The effects of processing paramenters, including roll gap, rolling speed and rolling temperature on the relative density of sheets were studied using the finite element analysis software (Abaqus). The simulation results were compared with the experimental ones. The results show that in the process of tungsten-copper alloy powder rolling, the larger the gap between rolls, the smaller the relative density of the rolled sheet and the more uniform the density distribution. With increasing rolling speed, the relative density of the sheet decreases, the low density area of the edge decreases, and the uniformity of the density distribution increases. The higher the rolling temperature is, the higher the relative density of the sheet is and the better the powder fluidity is. Comparing the simulation results with the experimental results, the maximum error is 4.1%, which indicates the reliability of the finite element model.
崔利群, 韩胜利, 施麒, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的有限元模拟研究[J]. 粉末冶金材料科学与工程, 2019, 24(5): 406-412.
CUI Liqun, HAN Shengli, SHI Qi, LI Daren, HU Jianzhao, LIU Zuyan. Finite element simulation study on the process of tungsten-copper powder rolling. Materials Science and Engineering of Powder Metallurgy, 2019, 24(5): 406-412.
[1] WU J W, HAN R Y, QIU A, et al.A further study on surface morphology and erosion products of 90WCu alloy electrodes[J]. IEEE Transactions on Plasma Science, 2018, 46(3): 670-676. [2] 杨广宇, 刘楠, 贾亮, 等. 钨铜复合材料用钨骨架的制备与压缩性能[J]. 粉末冶金材料科学与工程, 2017, 22(5): 701-706. YANG Guangyu, LIU Nan, JIA Liang, et al.Fabrication and compression property of tungsten skeleton for tungsten-copper composite[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(5): 701-706. [3] 高维娜, 王庆相, 杨怡, 等. 靶材用钨铜复合材料的制备工艺[J]. 稀有金属材料与工程, 2010, 39(5): 892-895. GAO Weina, WANG Qingxiang, YANG Yi, et al.Fabrication technology of tungsten copper composite for sputtering material[J]. Rare Metal Materials and Engineering, 2010, 39(5): 892-895. [4] DONG L L, AHANGARKANI M, CHEN W G, et al.Recent progress in development of tungsten-copper composites: Fabrication, modification and applications[J]. International Journal of Refractory Metals and Hard Materials, 2018, 75: 30-42. [5] VETTIVEL S C, SELVAKUMAR N, LEEMA N, et al.Electrical resistivity, wear map and modeling of extruded tungsten reinforced copper composite[J]. Materials & Design, 2014, 56(4): 791-806. [6] GU J H, ZHANG X N, QIU Y F, et al.Damping behaviors of magnesium matrix composites reinforced with Cu-coated and uncoated SiC particulates[J]. Composites Science and Technology, 2005, 65(11): 1736-1742. [7] NISHIYAMA K, MATSUI R, IKEDA Y, et al.Damping properties of a sintered Mg-Cu-Mn alloy[J]. Journal of Alloys and Compounds, 2003, 355(1/2): 22-25. [8] 章晓波, 孙文, 陈永明, 等. 粉末轧制-叠层烧结法制备较厚93W-4.9Ni-2.1Fe高密度钨合金片材的研究[J]. 稀有金属与硬质合金, 2013, 41(5): 28-31. ZHANG Xiaobo, SUN Wen, CHEN Yongming, et al.Study on preparation of thicker 93W-4.9Ni-2.1Fe tungsten heavy alloy sheets by powder rolling-stacking sintering[J]. Rare Metals and Cemented Carbides, 2013, 41(5): 28-31. [9] 赵伟斌, 李元元, 周照耀, 等. 金属粉末温压成形的数值模拟研究[J]. 粉末冶金工业, 2004, 14(5): 28-32. ZHAO Weibin, LI Yunyun, ZHOU Zhaoyao, et al.Numerical simulation study of metallic powder warm compaction process[J]. Powder Metallurgy Industry, 2004, 14(5): 28-32. [10] CANTO R B, TITA V, CARVALHO J D, et al. Finite element simulation of ceramic powder isostatic pressing process using material parameters of a uniaxial compaction[J]. Materials Science Forum, 2003, 416/418(1): 561-566. [11] 刘飞, 李文明. 数值模拟研究浇口方式对粉末注射成形铣刀粉体分布的影响[J]. 粉末冶金材料科学与工程, 2018, 23(3): 292-297. LIU Fei, LI Wenming.Numerical simulation research on the effect of gate patterns on powder volume fraction variation of MIM milling cutter[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(3): 292-297. [12] 刘明俊, 夏伟, 周照耀, 等. 金属粉末轧制工艺及其数值模拟[J]. 机械设计与制造, 2006(12): 122-124. LIU Mingjun, XIA Wei, ZHOU Zhaoyao, et al.Mechanical models and numerical simulation of rolling compaction for metal powders[J]. Machinery Design & Manufacture, 2006(12): 122-124. [13] GARNER S, STRONG J, ZAVALIANGOS A.The extrapolation of the Drucker-Prager/Cap material parameters to low and high relative densities[J]. Powder Technology, 2015, 283: 210-226.