Residual stress and dynamic mechanical properties of swaging deformed tungsten alloy
LIN Zehua1, KANG Jun2, ZHOU Yonggui2, ZHOU Chengshang1, YAN Wenmin3
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. Shenzhen Zhucheng Technology Co., Ltd., Shenzhen 518100, China; 3. Key Laboratory of Transient Shock Technology, No. 208 Research Institute of China Ordnance Industry, Beijing 102202, China
Abstract:95W-3.5Ni-1.5Fe tungsten alloy was prepared by cold isostatic pressing and vacuum sintering using W, Ni and Fe powders as raw materials. Then, the swaging processing with 15%, 30% and 40% deformation was carried out. Scanning electronic microscope with electron backscattered diffraction, split Hopkinson pressure bar and live-fire target test were used to analyze the microstructure, dynamic mechanical properties and residual stress distribution of 95W-3.5Ni-1.5Fe tungsten alloy. The results show that the W particles in the tungsten alloy deform from a spherical shape to an olive shape after swaging process. The static tensile strength and hardness (HRC) of the 40% deformation tungsten alloy increase from 983 MPa and 28.9 to 1 434 MPa and 46.1 HRC respectively, and the elongation decreases from 11.9% to 4.6%. There are residual compressive stresses in the alloy, which are mainly distributed between tungsten particles and in the Ni-Fe bonding phase. The deformed tungsten alloy has a higher strain rate of 4.9% under the impact strain rate of about 1.2×103 s-1, and exhibits “self-sharpening” when penetrating the steel target.
[1] ZHOU C X, YI J H, LUO S D, et al.Effect of heating rate on the microwave sintered W-Ni-Fe heavy alloys[J]. Journal of Alloys and Compounds, 2009, 482(1/2): L6-L8. [2] 周承商, 易健宏, 罗述东, 等. W-Ni-Fe 高密度合金的微波烧结[J]. 中国有色金属学报, 2009, 19(9): 1601-1607. ZHOU Chengshang, YI Jianhong, LUO Shudong, et al.Microwave sintering of W-Ni-Fe heavy alloys[J]. Nonferrous Metals Society of China Transactions, 2009, 19(9): 1601-1607. [3] 周承商, 易健宏, 罗述东. 微波烧结W-Ni-Fe高密度合金的变形现象及显微组织[J]. 粉末冶金材料科学与工程 2010, 15(3): 300-304. ZHOU Chengshang, YI Jianhong, LUO Shudong.Distortion and microstructure of microwave sintered W-Ni-Fe heavy alloys[J]. Material Science and Engineering of Powder Metallurgy, 2010, 15(3): 300-304. [4] ZHOU C X, YI J H, LUO S D.Sintering high tungsten content W-Ni-Fe heavy alloys by microwave radiation[J]. Metallurgical and Materials Transactions A, 2013, 45(1): 455-463. [5] MA Y Z, ZHANG J J, LIU W S, et al.Microstructure and dynamic mechanical properties of tungsten-based alloys in the form of extruded rods via microwave heating[J]. International Journal of Refractory Metals and Hard Materials, 2014, 42. 71-76. [6] 王晖, 张小明, 白润, 等. 高钨钽合金的动态力学性能研究现状[J]. 中国钨业, 2018, 33(3): 57-60. WANG Hui, ZHANG Xiaoming, BAI Run, et al.Research status of dynamic mechanical properties of high content of Ta-W alloy[J]. China Tungsten Industry, 2018, 33(3): 57-60. [7] 吕政, 任学平, 卢成壮. 动能穿甲弹用钨合金绝热剪切带的研究进展[J]. 兵器材料科学与工程, 2014, 37(6): 134-140. LÜ Zheng, REN Xueping, LU Chengzhuang.Reasearch progress of adiabatic shear bands in tungsten heavy alloy for kinetic energy penetrators[J]. Ordnance Material Science and Engineering, 2014, 37(6): 134-140. [8] 陈海华, 张先锋, 熊玮, 等. WFeNiMo 高熵合金动态力学行为及侵彻性能研究[J]. 力学学报, 2020, 52(5): 1443-1453. CHEN Haihua, ZHANG Xianfeng, XIONG Wei.et al.Dynamic mechanical behavior and penetration peformance of WFeNiMo high-entropy alloy[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443-1453. [9] 刘金旭, 李树奎, 周晓青, 等. 挤压扭转复合形变钨合金绝热剪切带内动态再结晶机制研究[J]. 稀有金属材料与工程, 2011, 40(6): 957-960. LIU Jinxu, LI Shukui, ZHOU Xiaoqing, et al.Dynamic recrystallizaiton in the shear bands of tungsten heavy alloy processed by hot-hydrostatic extrusion and hot torsion[J]. Rare Metal Materials and Engineering, 2011, 40(6): 957-960. [10] ZHOU X Q, LI S K, LIU J X.et al.Self-sharpening behavior during ballistic impact of the tungsten heavy alloy rod penetrators processed by hot-hydrostatic extrusion and hot torsion[J]. Materials Science and Engineering A, 2010. 527(18/19): 4881-4886. [11] ZHOU S C, JIAN R Z, LIANG Y J, et al.High susceptibility to adiabatic shear banding and high dynamic strength in tungsten heavy alloys with a high-entropy alloy matrix[J]. Journal of Alloys and Compounds, 2021, 859: 157796. [12] GUO W Q, LIU J X, YANG J, et al.Effect of initial temperature on dynamic recrystallization of tungsten and matrix within adiabatic shear band of tungsten heavy alloy[J]. Materials Science and Engineering A, 2011, 528(19/20): 6248-6252. [13] 王尔德, 于洋, 胡连喜, 等. W-Ni-Fe系高密度钨合金形变强化工艺研究进展[J]. 粉末冶金技术, 2004, 22(5): 303-307. WANG Erde, YU Yang, HU Lianxi, et al.Research progress in W-Ni-Fe tungsten heavy alloys by deformation strengthening processing[J]. Powder Metallurgy Technology, 2004, 22(5): 303-307. [14] 李淑华, 王富耻, 张朝晖, 等. 几种变形方式对钨合金组织性能及绝热剪切敏感性的影响[J]. 粉末冶金技术, 2006, 24(1): 60-63. LI Shuhua, WANG Fuchi, ZHANG Zhaohui, et al.Effects of several deformation methods on tungsten alloy microstructure, properties and adiabatic shear sensitivity[J]. Powder Metallurgy Technology, 2006, 24(1): 60-63. [15] 杨勇彬. 钨合金形变强化研究[C]// 2007年度学术交流会. 中国核学会核材料分会. 北京: 中国核学会, 2007. YANG Yongbin.Research on deformation strengthening of tungsten alloy[C]// 2007 Academic Conference, Nuclear Materials Branch of Chinese Nuclear Society. Beijing: Chinese Nuclear Society, 2007. [16] LIU J, LI S, FAN A, et al.Effect of fibrous orientation on dynamic mechanical properties and susceptibility to adiabatic shear band of tungsten heavy alloy fabricated through hot-hydrostatic extrusion[J]. Materials Science and Engineering A, 2008, 487(1/2): 235-242. [17] 李英雷, 胡时胜, 魏志刚, 等. 大变形锻造钨合金动态力学性能研究[J]. 兵工学报, 2003, 24(3): 378-380. LI Yinglei, HU Shisheng, WEI Zhigang, et al.Dynamic behavior of tungsten alloy forged with large deformation[J]. Acta Armamentaria, 2003, 24(3): 378-380. [18] 刘桂荣, 王玲, 王广达, 等. 钨合金轧制变形强化的组织与性能研究[J]. 兵器材料科学与工程, 2010, 33(5): 39-41. LIU Guirong, WANG Ling, WANG Guangda, et al.Microstructure and mechanical property of rolling strengthened tungsten alloy[J]. Ordnance Material Science and Engineering, 2010, 33(5): 39-41.