Microstructures and mechanical properties of 5083 aluminum alloy repaired by laser directed energy deposition
ZHU Hongbin1, HUA Qian2,3, LI Ruidi2,3, XU Rong2,3, LIN Zeheng2,3, NIU Pengda2,3, YUAN Tiechui2
1. CRRC Industry Research Institute,Beijing 100160, China; 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 3. Shenzhen Research Institute, Central South University, Shenzhen 518000, China
Abstract:In this paper, the slotted 5083 aluminum-magnesium alloy was repaired by laser direction energy deposition (DED) method, in which Al-Mg-Sc-Zr alloy powders was used as the repairing material. The microstructure and mechanical properties of 5083 alloy samples before and after repairing were studied by means of metallurgical microscope, scanning electron microscope, electron backscatter diffraction, room temperature tensile test and microhardness measurement, etc. Meanwhile, the mechanical properties of samples with different repairing volumes were compared. The results show that the columnar crystals near the fusion line in the repaired area are dendritic and grow epitaxially to the matrix perpendicular to the fusion line. The repaired zone shows a typical molten pool distribution with grain size of 4-9 μm and abundant pores. A large number of Al3(Sc,Zr) particles are precipitated near the fusion line and scanning orbit. The tensile strengths of the 5083 matrix material and the grooved restorations are not much different, which are 190.80 MPa and 197.73 MPa, respectively, but the elongation of the repaired specimens is greatly reduced. In the range of 2 mm from the matrix to the repaired zone, the average hardness (HV) value increases gradually from 50 to 100.
[1] LI L B, LI R D, YUAN T C, et al.Microstructures and tensile properties of a selective laser melted Al-Zn-Mg-Cu (Al7075) alloy by Si and Zr microalloying[J]. Materials Science and Engineering A, 2020, 787: 139492. [2] CHENG K, XI M Z, CHEN S, et al.Microstructures and mechanical properties of Ti6Al4V alloy repaired by the technology of point-mode forging and laser repairing[J]. Optics & Laser Technology, 2021, 144: 107410. [3] GROHOL C M, SHIN Y C, Alex Frank.Laser cladding of aluminum alloy 6061 via off-axis powder injection[J]. Surface and Coatings Technology, 2021, 415(2): 127099. [4] 刘丰刚, 林鑫, 宋衎, 等. 激光修复300M钢的组织及力学性能研究[J]. 金属学报, 2017, 53(3): 325-334. LIU Fenggang, LIN Xin, SONG Kan, et al.Microstructure and mechanical properties of 300M steel repaired by laser[J]. Acta Metall Sinica, 2017, 53(3): 325-334. [5] 王维, 张永泽, 杨光, 等. 冷焊与冷焊激光复合修复ZL114A铝合金组织和力学性能研究[J]. 稀有金属, 2020, 44(1): 18-25. WANG Wei, ZHANG Yongze, YANG Guang, et al.Study on microstructure and mechanical properties of cold-welding repaired and cold welding + laser deposition repaired ZL114A aluminium alloy[J]. Chinese Journal of Rare Metals, 2020, 44(1): 18-25. [6] LI R D, WANG M B, Tiechui Yuan, et al.Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: Processing, microstructure, and properties[J]. Powder Technology, 2017, 319: 117-128. [7] LI R D, WANG M B, LI Z M, et al.Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack- inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193: 83-98. [8] NIU P D, LI R D, ZHU S Y, et al.Hot cracking, crystal orientation and compressive strength of an equimolar CoCrFeMnNi high-entropy alloy printed by selective laser melting[J]. Optics and Laser Technology, 2020, 127: 106-117. [9] 王小艳, 陈静, 林鑫, 等. AlSi12粉激光成形修复7050铝合金组织[J]. 中国激光, 2009, 36(6): 1585-1590. WANG Xiaoyan, CHEN Jing, LIN Xin, et al.Microstructure repair of 7050 aluminum alloy by AlSi12 laser forming[J]. Chinese Journal of Lasers, 2009, 36(6): 1585-1590. [10] 郭永利, 梁工英, 李路. 铝合金的激光熔覆修复[J]. 中国激光, 2008, 35(2): 303-306. GUO Yongli, LIANG Gongying, LI Lu.Laser cladding reparation of aluminum alloy[J]. Chinese Journal of Lasers, 2008, 35(2): 303-306. [11] 张可召, 何超威, 林雨杨, 等. 激光熔覆修复5A06铝合金组织及力学性能[J]. 激光与光电子学进展, 2020, 56(7): 1-13. ZHANG Kezhao, HE Chaowei, LIN Yuyang, et al.Microstructure and mechanical properties of 5A06 aluminum alloy by laser cladding[J]. Laser & Optoelectronics Progress, 2020, 56(7): 1-13. [12] 钦兰云, 庞爽, 杨光, 等. 激光沉积修复ZL114A铝合金的组织及力学性能[J]. 稀有金属材料与工程, 2017, 46(6): 1596-1601. QIN Lanyun, PANG Shuang, YANG Guang, et al.Microstructure and mechanical properties of ZL114A aluminum alloy repaired by laser deposition[J]. Rare Metal Materials and Engineering, 2017, 46(6): 1596-1601. [13] 张寿禄. 电子背散射衍射技术及其应用[J]. 电子显微学报, 2002, 21(5): 703-704. ZHANG Shoulu.Electron backscatter diffraction technique and its application[J]. Journal of Electron Microscopy, 2002, 21(5): 703-704. [14] SCHWARTZ A J, KUMAR M, ADAMS B L, et al.Electron backscatter diffraction in materials science[M]. US: Springer, 2009. [15] STUART I W, NOWELL M M, FIELD D P.A review of strain analysis using electron backscatter diffraction[J]. Microscopy and Microanalysis, 2011, 17(3): 316-329. [16] 班乐, 黄嘉豪, 毛卫东, 等. 固溶时效处理对SLM成形CoCrWMo合金组织与性能的影响.[J]. 粉末冶金材料科学与工程, 2020, 25(1): 27-34. BAN Le, HUANG Jiahao, MAO Weidong, et al.Effect of solution aging treatment on microstructure and properties of CoCrWMo alloy formed by SLM[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(1): 27-34. [17] BLAN H, ZHAI Q, QU S, et al.Experimental study on laser deposition repair GH738 alloy[J]. Infrared and Laser Engineering, 2018, 47(7): 1-6. [18] 曹栗. 激光复合再制造TC4钛合金的组织和性能强化机制研究[D]. 镇江: 江苏大学, 2020. CAO Li.Study on microstructure and property Strengthening mechanism of laser remanufacturing TC4 titanium alloy[D]. Zhenjiang: Jiangsu University, 2020. [19] FANFONI M, TOMELLINI M.The Johnson-Mehl-Avrami- Kolmogorov model: a brief review[J]. Atomic Molecular and Chemical Physics Biophysics, 1998, 20(7): 1171-1182.