Abstract:The friction and wear characteristics of Cu-based powder metallurgy friction materials were evaluated on a space friction testing machine at high load (400 N) in vacuum at room temperature. The reliability life and wear mechanism of friction materials were investigated and revealed respectively. The experimental results show that there are three stages during the friction process. At the first stage, the friction coefficient increases from 0.28 to 0.61, and the abrasive wear is the dominant wear mechanism. In the second stage, the friction coefficient remains steadily (~0.61), and the dominant wear mechanism is the mixture of abrasive wear and adhesive wear. At the third stage, the friction coefficient begins to decrease. The dominant wear mechanism transforms to be the mixture adhesive wear and severe fatigue wear, leading to the material failure. During the test, the stability friction coefficient keeps up 0.9. The friction pairs can meet the demand of indexing mechanism and space manipulator in vacuum at room temperature.
钟爱文, 姚萍屏, 肖叶龙, 周海滨, 樊坤阳, 贡太敏, 凌攀, 刘超. 真空常温下空间用铜基粉末冶金摩擦材料的摩擦学行为及可靠性寿命[J]. 粉末冶金材料科学与工程, 2018, 23(1): 110-118.
ZHONG Aiwen, YAO Pingping, XIAO Yelong, ZHOU Haibin, FAN Kunyang, GONG Taimin, LING Pan, LIU Chao. Tribological behaviors and reliability life of Cu-based friction materials for space applications in vacuum at room temperature. Materials Science and Engineering of Powder Metallurgy, 2018, 23(1): 110-118.
[1] 周建平. 我国空间站工程总体构想[J]. 载人航天, 2013, 19(2): 1-10. ZHOU Jianping.Chinese space station project overall vision[J]. Manned Spaceflight, 2013, 19(2): 1-10. [2] XIAO Y, YAO P, ZHOU H, et al.Friction and wear behavior of copper matrix composite for spacecraft rendezvous and docking under different conditions[J]. Wear, 2014, 320(s1/2): 127-134. [3] 于登云, 孙京, 马兴瑞. 空间机械臂技术及发展建议[J]. 航天器工程, 2007, 16(4): 1-8. YU Dengyun, SUN Jing, MA Xingrui.Suggestion on development of Chinese space manipulator technology[J]. Spacecraft Engineering, 2007, 16(4): 1-8. [4] RUSCONI A, MAGNANI P, GRASSO T.DEXARM-a dextrous robot arm for space applications[C]. Proceedings of the8th ESA Workshop on Advanced Space Technologies for Robotics and Automation. Noordwijk Netherlands: ESTEC, 2004. [5] 汤树人, 陈宝东, 柏合民, 等. 对接转位机构末端抓手装置的创新设计[J]. 机械传动, 2009, 33(5): 32-35. TANG Shuren, CHEN Baodong, BAI Hemin, et al.Innovated design of terminal capture device in module redocking mechanism[J]. Journal of Mechanical Transmission, 2009, 33(5): 32-35. [6] 秦文波, 陈萌, 张崇峰, 等. 空间站大型机构研究综述[J]. 上海航天, 2010, 27(4): 32-42. QIN Wenbo, CHEN Meng, ZHANG Chongfeng, et al.Surveys on large-scale mechanism of space station[J]. Aerospace Shanghai, 2010, 27(4): 32-42. [7] 白鑫林. 空间站对接与转位机构性能测试研究[D]. 沈阳: 中国科学院沈阳自动化研究所, 2015. BAI Xinlin.Research on capacity test of space docking mechanism and redocking manipulator[D]. Shenyang: Shenyang Institute of Automation, 2015. [8] GROSSMAN E, GOUZMANn I.Space environment effects on polymers in low earth orbit[J]. Nuclear Instruments & Methods in Physics Research, 2003, 208(9): 48-57. [9] DIPIPPO S, COLOMBINA G, BOUMANS R, et al.Future potential applications of robotics for the International Space Station[J]. Robotics and Autonomous Systems, 1998, 23(1/2): 37-43. [10] BAKER F C, FAVRE E, MOZZON J M, et al.European Robotic Arm (ERA) manipulator joint system motor unit and tribologicalbrake[C]// 8th European Space Mechanisms and Tridology Symposium, 1999. [11] YAO Pingping, XIAO Yelong, DENG Junwang. Study on space copper-based powder metallurgy friction material and its tribological properties[J]. Advanced Materials Research, 2011, 284/286: 479-487. [12] 肖叶龙, 姚萍屏, 贡太敏, 等. 石墨与MoS2配比对空间对接用摩擦材料性能的影响[J]. 中国有色金属学报, 2012, 22(9): 2539-2545. XIAO Yelong, YAO Pingping, GONG Taimin, et al.Effects of proportion of graphite and MoS2 on performances of space docking friction material[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(9): 2539-2545. [13] YAO Pingping, XIAO Yelong, ZHOU Haibin, et al. Tribological and mechanical properties of materials for friction pairs used to space docking[J]. Advanced Materials Research, 2012, 538/541: 1929-1934. [14] COWAN R S, WINER W O.Friction lubrication and wear technology[M]. New York: ASM, 1992: 39-44. [15] LOGAN J.China’s space program: Options for U S China cooperation[C]. Congressional Research Service Reports. Library of Congress. Congressional Research Service, 2008: 1-6. [16] BURT R R, LOFFI R W.Failure analysis of international space station control moment gyro[C]. Proceedings of the 10th European Space Mechanisms and Tridology Symposium, San Sebastián, 2003, 524(524): 13-25. [17] JOHNSON M R, GEHLING R, HEAD R.Failure of harmonic gears during verification of a two-axis gimbal for the mars reconnaissance orbiter spacecraft[C]. Proceedings of the 38th Aerospace Mechanisms Symposium, Langley Research Center, 2006: 17-19. [18] 肖叶龙,. 模拟空间环境及结构变化对空间对接用摩擦副性能的影响[D]. 长沙: 中南大学, 2012 XIAO Yelong.Effects of the aerospace environmental factors and structural changes on properties of friction pairs for space docking[D]. Changsha: Central South University, 2012. [19] STOTT F H, GLASCOTT J, WOODG C.Models for the generation of oxides during sliding wear[J]. Proceedings of the Royal Society A, 1985, 402(1822): 167-186. [20] 汪力, 闫荣鑫. 超高真空环境冷焊与防冷焊试验现状与建议[J]. 航天器环境工程, 2008, 25(6): 558-563. WANG Li, YAN Rongxin.A study on cold welding and protection against cold welding[J]. Spacecraft Environment Engineering, 2008, 25(6): 558-563. [21] 翟文杰, 高云峰, 齐毓霖, 等. 超高真空下电流对铜/铝接触副静态粘着的影响[J]. 机械工程师, 2001(10): 23-25. ZHAI Wenjie, GAO Yunfeng, QI Yulin, et al.Effect of electric currents on static adhesion for Cu/Al contact under ultrahigh vacuum condition[J]. Mechanical Engineer, 2001(10): 23-25. [22] 姚萍屏, 邓军旺, 熊翔, 等. 空间用铜基粉末冶金摩擦材料及其摩擦性能研究[C]. 2007全国粉末冶金学术及应用技术会议暨海峡两岸粉末冶金技术研讨会, 2007. YAO pingping, DENG Junwang, XIONG Xiang, et al. The research of space docking copper-based powder metallurgy friction material and its tribological performances[C]. National Conference on Powder Metallurgy Academic and Applied Technology and Cross Strait Powder Metallurgy Technology Conference, 2007.