Research progress of synergistic reinforced copper matrix composites prepared by powder metallurgy
BAO Rui1,2,3, ZHANG Wenfu1, YI Jianhong1,2,3, GUO Shengda2,3
1. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; 2. Engineering Research Center of Tungsten Resources High-efficiency Development and Application Technology of the Ministry of Education, Jiangxi University of Science and Technology, Ganzhou 341000, China; 3. Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
Abstract:Copper materials occupy an important position in modern industry, but it is limited by performance shortages such as strength, wear resistance and stability, etc. Therefore, introducing the reinforcement into the copper matrix to prepare copper composite materials with excellent comprehensive performance through powder metallurgy technology has become a hot spot in the field of copper materials research. Even, multi-component and multi-scale synergistic enhancement is employed to design copper-based materials and obtain copper-based composite materials with better comprehensive performance to meet the requirements of more application fields. This paper reviews the research progress of common synergistically strengthened copper matrix composites, the method of introducing the reinforcing phase into the copper matrix, the synergistic enhancement effect, and mechanism, etc. At last, the development direction of synergistically strengthened copper matrix composites and the problems that need to be solved are given.
[1] 林正得, 舒圣程, 李傲, 等. 石墨烯增强铜基复合材料的研究进展[J]. 无机材料学报, 2019, 34(5): 469-477. LIN Zhengde, SHU Shengcheng, LI Ao, et al.Research progress of graphene reinforced copper matrix composites[J]. Journal of Inorganic Materials, 2019, 34(5): 469-477. [2] 周洪雷, 刘平, 陈小红, 等. 原位合成CNTs 强化铜基复合材料的组织与性能[J]. 材料热处理学报, 2018, 39(7): 1-6. ZHOU Honglei, LIU Ping, CHEN Xiaohong, et al.Microstructure and properties of CNTs reinforced copper matrix composites synthesized in situ[J]. Journal of Material Heat Treatment, 2018, 39(7): 1-6. [3] 伊春强, 尹彩流, 刘春轩, 等. 粉末冶金法制备三维(3D)石墨烯增强铜基复合材料的性能[J]. 粉末冶金材料科学与工程, 2019, 24(5): 478-484. YI Chunqiang, YIN Cailiu, LIU Chunxuan, et al.Properties of three-dimensional (3D) graphene reinforced copper matrix composites prepared by powder metallurgy[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(5): 478-484. [4] 郭圣达, 陈颢, 张建波, 等. 协同增强铜基复合材料及其制备方法[P]. 江西省: CN109825734B.2020-09-01. GUO Shengda, CHEN Hao, ZHANG Jianbo, et al. Synergistic reinforced copper matrix composites and their preparation methods[P]. Jiangxi Province: CN109825734B.2020-09-01. [5] 李兴艳. 铜合金(CuSn8P)高温塑性变形行为与热加工特性试验研究[D]. 太原: 中北大学, 2019. LI Xingyan.Experimental study on high temperature plastic deformation behavior and hot working characteristics of copper alloy (CuSn8p)[D]. Taiyuan: North University of China, 2019. [6] 冯江, 宋克兴, 梁淑华, 等. 混杂增强铜基复合材料的设计与研究进展[J]. 材料热处理学报, 2018, 39(5): 1-9. FENG Jiang, SONG Kexing, LIANG Shuhua, et al.Design and research progress of hybrid reinforced copper matrix composites[J]. Journal of material heat treatment, 2018, 39(5): 1-9. [7] 王臣臣. 二硼化锆增强铜基复合材料的研究[D]. 广州: 暨南大学, 2018. WANG Chenchen.Research on zirconium diboride reinforced copper matrix composites[D]. Guangzhou: Jinan University, 2018. [8] 祝志祥, 丁一, 徐若愚, 等. 碳纤维增强铜基复合材料制备方法研究进展[J]. 功能材料, 2021, 52(3): 3060-3066. ZHU Zhixiang, DING Yi, XU Ruoyu, et al.Research progress on preparation methods of carbon fiber reinforced copper matrix composites[J]. Functional Materials, 2021, 52(3): 3060-3066. [9] 王晗. 多相协同增强铜基复合材料的制备与强化机理研究[D]. 秦皇岛: 燕山大学, 2020. WANG Han.Study on preparation and strengthening mechanism of multiphase synergistic reinforced copper matrix composites [D]. Qinhuangdao: Yanshan University, 2020. [10] 周川, 路新, 贾成厂, 等. 碳纳米管增强铜基复合材料的制备,力学性能及电导率[J]. 稀有金属材料与工程, 2019, 48(4): 1249-1255. ZHOU Chuan, LU Xin, JIA Chengchang, et al.Preparation, mechanical properties and conductivity of carbon nanotube reinforced copper matrix composites[J]. Rare Metal Materials and Engineering, 2019, 48(4): 1249-1255. [11] 龙飞. CNTs-TiB2混杂增强铜基复合材料组织及性能研究[D]. 郑州: 河南科技大学, 2020. LONG Fei.Study on microstructure and properties of CNTs-TiB2 hybrid reinforced copper matrix composites[D]. Zhengzhou: Henan University of Science and Technology, 2020. [12] 刘亮. 分子级共混法制备 CNT/Cu-Ti复合材料及微观组织结构和性能研究[D]. 昆明: 昆明理工大学, 2018. LIU Liang.Study on microstructure and properties of CNT/Cu-Ti composites prepared by molecular blending[D]. Kunming: Kunming University of Science and Technology, 2018. [13] 李国辉. TiB2颗粒和CNTs混杂增强铜基复合材料制备及其电接触行为研究[D]. 洛阳: 河南科技大学, 2018. LI Guohui.Preparation and electrical contact behavior of TiB2 particles and CNTs hybrid reinforced copper matrix composites[D]. Luoyang: Henan University of Science and Technology, 2018. [14] 徐少春, 杨军, 崔雅茹. 陶瓷颗粒增强铜基复合材料研究进展[J]. 热加工工艺, 2009, 38(10): 105-108. XU Shaochun, YANG Jun, CUI Yaru.Research progress of ceramic particle reinforced copper matrix composites[J]. Hot Working Technology, 2009, 38(10): 105-108. [15] XIANG S Q, DU X J, LIANG Y H, et al.Optimizing phase interface of titanium carbide-reinforced copper matrix composites fabricated by electropulsing-assisted flash sintering[J]. Materials Science and Engineering A, 2021, 819: 141506. [16] ZHANG G H, JIANG X S, SHAO Z Y, et al.Microstructures and mechanical properties of alumina whisker reinforced copper matrix composites prepared by hot-pressing and hot isostatic pressing[J]. Materials Research Express, 2019, 6(11): 116513. [17] CHEN X F, TAO J M, YI J H, et al.Strengthening behavior of carbon nanotube-graphene hybrid in copper matrix composite[J]. Materials Science and Engineering A, 2018, 718: 427-467. [18] KIM K T, ECKERT J, MENZEL S B, et al.Grain refinement assisted strengthening of carbon nanotube reinforced copper matrix nanocomposites[J]. Applied Physics Letters, 2008, 92(12): 1219011-12190130. [19] 李澜波, 鲍瑞, 易健宏, 等. 微波烧结碳纳米管增强铜基复合材料的显微组织与力学性能[J]. 粉末冶金材料科学与工程, 2017, 22(4): 569-575. LI Lanbo, BAO Rui, YI Jianhong, et al.Microstructure and mechanical properties of microwave sintered carbon nanotube reinforced copper matrix composites[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(4): 569-575. [20] 韦德满, 黄朴, 周治文, 等. 石墨烯增强铜基复合材料的制备技术及发展[J]. 特种铸造及有色合金, 2020, 40(3): 259-265. WEI Deman, HUANG Pu, ZHOU Zhiwen, et al.Preparation technology and development of graphene reinforced copper matrix composites[J]. Special Casting and Nonferrous Alloys, 2020, 40(3): 259-265. [21] 孙海珠, 杨国夺, 杨柏. 碳点的设计合成,结构调控及应用[J]. 高等学校化学学报, 2021, 42(2): 349-365. SUN Haizhu, YANG Guoduo, YANG Bai.Design, synthesis, structural regulation and application of carbon dots[J]. Journal of Chemistry of Colleges and Universities, 2021, 42(2): 349-365. [22] 黄啸, 鲍瑞, 易健宏. 碳量子点(CQDs)在纯铜基复合材料中的增强作用[J]. 中南大学学报(英文版), 2021, 28(4): 1255-1265. HUANG Xiao, BAO Rui, YI Jianhong.Enhancement of carbon quantum dots (CQDs) in pure copper matrix composites[J]. Journal of Central South University (English Edition), 2021, 28(4): 1255-1265. [23] LONG F, GUO X H, SONG K X, et al.Synergistic strengthening effect of carbon nanotubes (CNTs) and titanium diboride (TiB2) microparticles on mechanical properties of copper matrix composites[J]. Journal of Materials Research and Technology, 2020, 9(4): 7989-8000. [24] 周泉竹, 徐海波, 杜敏, 等. 碳纳米管的表面改性及在铜基复合材料中的应用[J]. 功能材料, 2019, 50(4): 4201-4206. ZHOU Quanzhu, XU Haibo, DU Min, et al.Surface modification of carbon nanotubes and its application in copper matrix composites[J]. Functional Materials, 2019, 50(4): 4201-4206. [25] 周生刚, 徐阳, 马双双, 等. 碳纳米管增强金属基复合材料研究综述[J]. 昆明理工大学学报(自然科学版), 2017, 42(4): 14-19. ZHOU Shenggang, XU Yang, MA Shuangshuang, et al.Review of carbon nanotube reinforced metal matrix composites[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2017, 42(4): 14-19. [26] DENG H, YI J H, XIA C, et al.Mechanical properties and microstructure characterization of well-dispersed carbon nanotubes reinforced copper matrix composites[J]. Journal of Alloys and Compounds, 2017, 727: 260-268. [27] 杨长毅, 刘允中, 余开斌. 球磨时间对石墨烯/ODS铜基复合材料组织与性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(3): 281-291. YANG Changyi, LIU Yunzhong, YU Kaibin.Effect of ball milling time on microstructure and properties of graphene/ODS copper matrix composites[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(3): 281-291. [28] 余杰, 曾洪亮, 温业成, 等. 石墨烯增强铜基复合材料的研究进展[J]. 材料科学与工程学报, 2021, 39(1): 167-173. YU Jie, ZENG Hongliang, WEN Yecheng, et al.Research progress of graphene reinforced copper matrix composites[J]. Journal of Materials Science and Engineering, 2021, 39(1): 167-173. [29] MAI Y G, CHEN F X, LIAN W Q, et al.Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets[J]. Journal of Alloys and Compounds, 2018, 756: 1-7. [30] 王剑, 郭丽娜, 林万明, 等. 石墨烯含量对铜基复合材料的导电, 导热, 耐腐蚀和力学性能的影响[J]. 新型炭材料, 2019, 34(2): 161-169. WANG Jian, GUO Lina, LIN Wanming, et al.Effect of graphene content on electrical conductivity, thermal conductivity, corrosion resistance and mechanical properties of copper matrix composites[J]. New Carbon Materials, 2019, 34(2): 161-169. [31] RAJKOVIC V, BOZIC D, DEVECERSKI A, et al.Characteristic of copper matrix simultaneously reinforced with nano-and micro-sized Al2O3 particles[J]. Materials Characterization, 2012, 67: 129-137. [32] LIN H R, GUO X X, SONG K X, et al.Synergistic strengthening mechanism of copper matrix composite reinforced with nano-Al2O3 particles and micro-SiC whiskers[J]. Nanotechnology Reviews, 2021, 10(1): 62-72. [33] WU T F, LEE S L,CHEN M H, et al.Effects of tungsten carbide and cobalt particles on corrosion and wear behaviour of copper matrix composite[J]. Materials Science and Technology, 2005, 21(3): 295-304. [34] ZHANG X J, YANG W C, ZHANG J Y, et al.Multiscale graphene/carbon fiber reinforced copper matrix hybrid composites: microstructure and properties[J]. Materials Science & Engineering, 2019, 743: 512-519. [35] ZHANG X, SHI C S, LIU E Z, et al.In-situ space-confined synthesis of well-dispersed three-dimensional graphene/carbon nanotube hybrid reinforced copper nanocomposites with balanced strength and ductility[J]. Composites Part A, 2017, 103: 178-187. [36] XIA W, TAO J M, LIU Y C, et al.High strength and electrical conductivity of copper matrix composites reinforced by carbon nanotube-graphene oxide hybrids with hierarchical structure and nanoscale twins[J]. Diamond & Related Materials, 2019, 99: 107537. [37] XU Z H, ZHANG X, ZHAO N Q, et al.Synergistic strengthening effect of in-situ synthesized WC1-x nanoparticles and graphene nanosheets in copper matrix composites[J]. Composites Part A, 2020, 133: 105891. [38] NAUTIYAL H, KUMARI S, KHATRI O P, et al.Copper matrix composites reinforced by rGO-MoS2 hybrid: strengthening effect to enhancement of tribological properties[J]. 2019, 173: 106931. [39] PAN Y, XIAO S Q, LU X, et al.Fabrication mechanical properties and electrical conductivity of Al2O3 reinforced Cu/CNTs composites[J]. Journal of Alloys and Compounds, 2019, 782: 1015-1023. [40] LIANG S H, LI W Z, JIANG Y H, et al.Microstructures and properties of hybrid copper matrix composites reinforced by TiB whiskers and TiB2 particles[J]. Journal of Alloys and Compounds, 2019, 797: 589-594. [41] CHEN X F, TAO J M, LIU Y C, et al.Interface interaction and synergistic strengthening behavior in pure copper matrix composites reinforced with functionalized carbon nanotube- graphene hybrids[J]. Carbon, 2019, 146: 736-755. [42] SHU R, JIANG X S, SHAO Z Y, et al.Fabrication and mechanical properties of MWCNTs and graphene synergetically reinforced Cu-graphite matrix composites[J]. 2019, 349: 59-69. [43] ZHAO Q, GAN X P, ZHOU K C.Enhanced properties of carbon nanotube-graphite hybrid-reinforced Cu matrix composites via optimization of the preparation technology and interface structure[J]. Powder Technology, 2019, 355: 408-416. [44] 张良启, 鲍瑞, 易健宏. 喷雾热解制备 CNT/W 用于增强铜基复合材料[J]. 中国钨业, 2020, 35(6): 17-23. ZHANG Liangqi, BAO Rui, YI Jianhong.Spray pyrolysis CNT/W was used to enhance copper matrix composites[J]. China Tungsten Industry, 2020, 35(6): 17-23. [45] CHEN X Y, BAO R, YI J H, et al.Enhancing mechanical properties of pure copper-based materials with CrxOy nanoparticles and CNT hybrid reinforcement[J]. Journal of Materials Science, 2020, 56: 1-16. [46] AKBARPOUR M R, MIRABAD H M, AZAR M K, et al.Synergistic role of carbon nanotube and SiCn reinforcements on mechanical properties and corrosion behavior of Cu-based nanocomposite developed by flake powder metallurgy and spark plasma sintering process[J]. Chemicals & Chemistry, 2020, 786: 139395. [47] QIAO Y B, CAI X L, ZHOU Lwi, et al.Microstructure and mechanical properties of copper matrix composites synergistically reinforced by Al2O3 and CNTs[J]. Integrated Ferroelectrics, 2018, 191(1): 133-144. [48] GUO X H, YANG Y B, SONG K X, et al.Arc erosion resistance of hybrid copper matrix composites reinforced with CNTs and micro-TiB2 particles[J]. Journal of Materials Research and Technology, 2021, 11: 1469-1479. [49] CUI G J, BI Q L, ZHU S Y, et al.Synergistic effect of alumina and graphite on bronze matrix composites: tribological behaviors in sea water[J]. Wear, 2013, 303(1/2): 216-224. [50] 韩凤麟. 粉末冶金基材教程-基本原理与应用[M]. 广州: 华南理工大学出版社, 2005: 8-25. HAN Fenglin.Course of Powder Metallurgy Substrate Basic Principle and Application[M]. Guangzhou: South China University of Technology Press, 2005: 8-25. [51] 褚伟文. TiC/金刚石增强铜基复合材料的制备及其组织性能研究[D]. 北京: 华北电力大学, 2020. CHU Weiwen.Preparation microstructure and properties of TiC/diamond reinforced copper matrix composites[D]. Beijing: North China Electric Power University, 2020. [52] 鲍瑞, 李澜波, 易健宏, 等. CNTs 增强铜基复合粉末制备的研究进展[J]. 粉末冶金技术, 2016, 34(6): 454-460. BAO Rui, LI Lanbo, YI Jianhong, et al.Research progress in the preparation of CNTs reinforced copper matrix composite powder[J]. Powder Metallurgy Technology, 2016, 34(6): 454-460. [53] LASIO B, TORRE F, ORRU R, et al.Fabrication of Cu-graphite metal matrix composites by ball milling and spark plasma sintering[J]. Materials Letters, 2018, 230: 199-202. [54] 聂海斌. 分子级混合法制备石墨烯铜基复合材料及其摩擦学性能研究[D]. 长沙: 湖南大学, 2018. NIE Haibin.Preparation of graphene copper matrix composites by molecular mixing method and its tribological properties[D]. Changsha: Hunan University, 2018. [55] 蒋阳, 陶珍东. 粉体工程[M]. 武汉: 武汉理工大学出版社. 2011: 387-388. JIANG Yang, TAO Zhendong.Powder Engineering[M]. Wuhan: Wuhan University of Technology Press, 2011: 387-388. [56] 王靖瑛, 吕信群, 陈仕奇, 等. Ni 含量对 Cu-Ni-Ag 合金固溶强化行为的影响[J]. 粉末冶金材料科学与工程, 2021, 26(3): 263-271. WANG Jingying, LÜ Xinqun, CHEN Shiqi, et al.Effect of Ni content on solid solution strengthening behavior of Cu-Ni-Ag alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(3): 263-271. [57] XIONG C Z, LI D S, SONG S L, et al.Research on the performance of rGO-CNTs synergistically enhanced copper matrix composites[J]. Powder Technology, 2021, 394: 1-9. [58] LIU L, BAO R, YI J H.Mono-dispersed and homogeneous CNT/Cu composite powder preparation through forming Cu2O intermediates[J]. Powder Technology, 2018, 328: 430-435. [59] 赵文敏, 鲍瑞, 易健宏, 等. 静电吸附制备 RGO/Cu 复合材料[J]. 中国有色金属学报(英文版), 2020, 30(4): 982-991. ZHAO Wenmin, BAO Rui, YI Jianhong, et al.Fabrication of RGO/Cu composites based on electrostatic adsorption[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 982-991. [60] 丁飞. Al2O3 强化铜基复合材料的制备及其性能研究[D]. 安徽: 合肥工业大学, 2014. DING Fei.Preparation and properties of Al2O3 reinforced copper matrix composites[D]. Anhui: Hefei University of Technology, 2014. [61] FAN L, WANG T L, FU Z B, et al.Effect of heat-treatment on-line process temperature on the microstructure and tensile properties of a low carbon Nb-microalloyed steel[J]. Materials Science and Engineering A, 2014, 607: 559-568.