Abstract:Powder metallurgy (PM) Cp-Ti, Ti-6Al-4V and Ti-5Al-2.5Fe alloys were prepared by vacuum sintering process using TiH2 powder as the raw material. The effects of sintering temperature on microstructure and mechanical tensile properties of sintered products were studied. The results show that the increase of sintering temperature increases the densities and the tensile properties of pure Ti and titanium alloys obviously. After vacuum sintering at 1 200 ℃, the relative density of pure Ti reaches 98.1%, the tensile strength is 501 MPa, and the elongation reaches 11.3%. The relative density of the Ti-6Al-4V alloy is 96.2%, and the tensile strength is 968 MPa, and the elongation is 8.1%. The relative density of the Ti-5Al-2.5Fe alloy is 96.2%, and the tensile strength is 867 MPa, and the elongation is 6.7%. The fracture surface of the three samples sintered at 1 200 ℃ shows a large number of dimples, which exhibits the characteristic of ductile fracture. The strength and elongation of the titanium alloys prepared from TiH2 powder reach the standard level of titanium alloys.
[1] ELIAS C N, MEYERSMA, VALIEVRZ, et al.Ultrafine grained titanium for biomedical applications: An overview of performance[J]. Journal of Materials Research and Technology, 2013, 2(4): 340-350. [2] RACK H J, QAZI J I.Titanium alloys for biomedical applications[J]. Materials Science and Engineering C, 2006, 26(8): 1269-1277. [3] EZUGWU E O, BONNEY J, YAMANE Y.An overview of the mach inability of aero engine alloys[J]. Journal of Materials Processing Technology, 2003, 134(2): 233-253. [4] 陈五一, 袁跃峰.钛合金切削加工技术研究进展[J].航空制造技术, 2010(15): 26-30. CHEN Wuyi, YUAN Yuefeng.Research progress of titanium alloy cutting technology[J]. Aeronautical Manufacturing Technology, 2010(15): 26-30. [5] BHOWMIK S, BENEDICTUS R, POULIS J A, et al.High- performance nanoadhesive bonding of titanium for aeropace and space applications[J]. International Journal of Adhesion and Adhesives, 2009, 29(3): 259-267. [6] WANG F, CUI W, PAN B, et al.Normalised fatigue and fracture properties of candidate titanium alloys used in the pressure hull of deep manned submersibles[J]. Ships and Offshore Structures, 2014, 9(3): 297-310. [7] 喻岚, 李益民, 邓忠勇, 等. 采用氢化钛粉制备Ti-6Al-4V合金[J]. 金属材料与冶金工程, 2004, 32(5): 17-19. YU Lan, LI Yiming, DENG Zhongyong, et al.TiH2 uesd for the preparation of Ti-6Al-4V alloys[J]. Metallic Materials and Metallurgical Engineering, 2004, 32(5): 17-19. [8] SUN Z M, ZOU Y, SHUJI T, et al.Rapid synthesis of single- phase Ti3AlC2 through pulse discharge sintering a TiH2/Al/TiC powder mixture[J]. Scripta Materialia, 2007, 56(9): 725-728. [9] WANG H T, LEFLER M, FANG Z Z, et al.Titanium and titanium alloy Vin sintering of TiH2[J]. Key Engineering Materials, 2010, 436(436): 157-163. [10] 韦伟峰, 黄伯云, 刘咏, 等. 混合元素法PM钛合金的研究进展[J]. 材料导报, 2002, 16(11): 20-24. WEI Weifeng, HUANG Baiyun, LIU Yong, et al.Research progress of PM titanium alloy by mixed element method[J]. Material Report, 2002, 16(11): 20-24. [11] EYLON D, FROES F H.Titanium net-shape technologies[J]. The Journal of the Minerals Metals & Materials Society (TMS), 1984, 36(6): 36-41. [12] 贺卫卫, 贾文鹏, 杨广宇, 等. TiAl预合金粉末制备的研究进展[J]. 钛工业进展, 2012, 29(4): 1-6. HE Weiwei, JIA Wenpeng, YANG Guangyu, et al.Research progress in preparation of TiAl prealloyed powder[J]. Titanium Industry Progress, 2012, 29(4): 1-6. [13] FROES F H, MASHL S J, HEBEISEN J C, et al.The technologies of titanium powder metallurgy[J]. The Journal of The Minerals Metals & Materials Society, 2004, 56(11): 46-48. [14] IVASISHINO M, ANOKHINV M, DEMIDIKA N, et al.Cost- effective blended elemental powder metallurgy of titanium alloys for transportation application[J]. Key Engineering Materials, 2000, 188: 55-62. [15] IVASISHINO M, DEMIDIKA N, SAVVAKIND G.Use of titanium hydride for the synthesis of titanium aluminides from powder materials[J]. Powder Metallurgy and Metal Ceramics, 1999, 38(9): 482-487. [16] JANG J M, LEE W S, KO S H, et al. Microstructures and oxygen reduction of recycled TiH2 powders during sintering[J]. Advanced Materials Research, 2008, 740, 47/50: 995-998. [17] WANG C, ZHANG Y, XIAO S, et al.Sintering densification of titanium hydride powders[J]. Advanced Manufacturing Processes, 2016, 32(5): 517-522. [18] 杨军, 张家敏, 马文瑾, 等. 烧结温度对TC4合金的微观结构和力学性能的影响[J]. 材料研究学报, 2019, 33(5): 20-26. YANG Jun, ZHANG Jiamin, MA Wenjin, et al.Effect of sintering temperature on microstructure and mechanical properties of TC4 alloy[J]. Journal of Materials Research, 2019, 33(5): 20-26. [19] CAO F, CHANDRAN K S R, KUMAR P. New approach to achieve high strength powder metallurgy Ti-6Al-4V alloy through accelerated sintering at β-transus temperature and hydrogenation treatment[J]. Scipta Materialia, 2017, 130: 22-26. [20] TAKANORI M, LI S, JUNKO U, et al.Strengthening mechanisms of P/M extruded titanium materials with additive hydrogen[J]. Journal of Japan Society of Powder and Powder Metallurgy, 2013, 60(11): 467-474. [21] 张家敏, 易健宏, 雷霆, 等. TiH2粉末制备钛合金的烧结脱氢规律及工艺[J]. 科技导报, 2012, 30(1): 65-68. ZHANG Jiaming, YI Jianhong, LEI Ting, et al.Dehydrogenation and sintering process of titanium hydride for manufacture titanium and titanium alloy[J]. Science Technology Review, 2012, 30(1): 65-68. [22] SUN Y, LUO G, ZHANG J, et al.Phase transition, microstructure and mechanical properties of TC4 titanium alloy prepared by plasma activated sintering[J]. Journal of Alloys and Compounds, 2018, 741: 918-926. [23] 洪艳, 曲涛, 沈化森, 等. 氢化脱氢法制备钛粉工艺研究[J]. 稀有金属, 2007, 31(3): 311-315. HONG Yan, QU Tao, SHEN Huasen, et al.Titanium production through hydrogenation and dehydrogenation process[J]. Rare Metal, 2007, 31(3): 311-315. [24] 邹黎明, 毛新华, 刘辛, 等. 粉末粒度对热压Ti-6Al-4V合金微观组织和力学性能的影响[J]. 粉末冶金材料科学与工程, 2016, 21(2): 217-222. ZOU Liming, MAO Xinhua, LIU Xin, et al.Effect of particle size on microstructure and mechanical properties of Ti-6Al-4V alloy prepared by hot press[J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(2): 217-222. [25] 刘宏宇. 间隙元素(H,N,O)对铸造钛合金组织和力学性能的影响[D]. 北京: 机械科学研究总院, 2008. LIU Hongyu.Effect of interstitial elements (H,N,O) on microstructure and mechanical properties of cast titanium alloys[D]. Beijing: China Academy of Machinery Science and Technology, 2008. [26] 米国发, 孔留安, 尹东松, 等. 氮对钛合金铸态组织和性能的影响[J]. 铸造技术, 2005, 26(2): 106-108. MI Guofa, KONG Liuan, YIN Dongsong, et al.Effect of nitrogen on as-cast microstructure and properties of titanium alloys[J]. Casting Technology, 2005, 26(2): 106-108. [27] YAN M, XU W, DARGUSCHM S, et al.Review of effect of oxygen on room temperature ductility of titanium and titanium alloys[J]. Powder Metallurgy, 2014, 57(4): 251-257. [28] 陈冬梅, 黄森森, 贺飞, 等. Fe元素对TA15钛合金显微组织和力学性能的影响[J]. 钛工业进展, 2017, 34(2): 14-18. CHEN Dongmei, HUANG Sensen, HE Fei, et al.Effect of Fe element on microstructure and mechanical properties of TA15 titanium alloy[J]. Titanium Industry Progress, 2017, 34(2): 14-18. [29] LIN F, CHEN Z, LIU B, et al.Microstructure and mechanical properties of iron-containing titanium metal-metal composites[J]. International Journal of Refractory Metals and Hard Materials, 2020, 90: 105225. [30] 邵晖, 赵永庆, 葛鹏, 等. 不同组织类型对TC21合金强-塑性的影响[J]. 稀有金属材料与工程, 2013, 42(4): 845-848. SHAO Hui, ZHAO Yongqing, GE Peng, et al.Effects of different microstructure types on the strength and plasticity of TC21 alloy[J]. Rare Metal Materials and Engineering, 2013, 42(4): 845-848. [31] 白新房, 赵永庆, 郑翠萍, 等. 不同组织形态TC4钛合金力学性能研究[J]. 钛工业进展, 2011, 28(3): 26-29. BAI Xinfang, ZHAO Yongqing, ZHENG Cuiping, et al.Research on mechanical properties of titanium alloy with different microstructures[J]. Titanium Industry Progress, 2011, 28(3): 26-29. [32] WELSCHG, BOYERR, COLLINGSE. Materials Properties Handbook: Titanium Alloys[M]. USA: ASM International, 1994. [33] 全国信息与文献标准化技术委员会. GB/T 2965—1996. 都柏林核心元数据元素集[S]. 北京: 中国标准出版社, 1996. National Technical Committee for Standardization of Information and Documentation. GB/T 2965—1996. Dublin core metadata element set for information and documentation[S]. Beijing: Standards Press of China, 1996.