Abstract:Three kinds of steel back (45# steel) with different surface coatings were used to prepare Cu-based powder metallurgy brake materials. The effects of surface coatings on the anti carburizing and thermal fatigue resistance of the steel back and the bonding properties between the steel back and friction materials were studied. The results show that Ni coating on the surface can not prevent the carburization of the graphite backing plate to the steel back during pressure sintering, while the surface plating of Cu or Cu + Ni can effectively prevent the carburization of the steel back. Under the condition of thermal fatigue, the strength and hardness of the steel back coated with Ni are improved by carburizing, and the bonding strength with friction material is good, but it is easy to warp and crack. The back plates coated with Cu and Cu + Ni are not easy to warp, deform and crack. The bonding strength between Cu plated back plate and friction materials is poor. The bonding strength between the steel back coated with Cu + Ni and the friction material is good.
[1] 姚萍屏. 高性能粉末冶金制动摩擦材料[M]. 长沙: 中南大学出版社, 2016. YAO Pingping. High-performance Powder Metallurgy Friction Materials[M]. Changsha: Central South University Press, 2016. [2] 周海滨, 姚萍屏, 肖叶龙, 等. 铜基粉末冶金摩擦材料特征摩擦组元与基体的界面形成及磨损机理[J]. 中国有色金属学报, 2016, 26(2): 328-336. ZHOU Haibin, YAO Pingping, XIAO Yelong, et al. Interface formation and wear mechanism between characteristic friction components and base components of Cu-based powder metallurgy friction materials[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 328-336. [3] 肖申荣, 何林. 摩擦材料及其制品生产技术[M]. 北京: 北京大学出版社, 2010: 22-23. XIAO Shenrong, HE Lin. Manufacturing Technology of Friction Material and its Products[M]. Beijing: Peking University Press, 2010: 22-23. [4] 姚萍屏, 熊翔, 黄伯云. 航空刹车材料的现状与发展[J]. 粉末冶金工业, 2000, 10(6): 34-37. YAO Pingping, XIONG Xiang, HUANG Baiyun. Present situation and development of powder metallurgy airplane brake material[J]. Powder Metallurgy Industry, 2000, 10(6): 34-37. [5] 杨永连. 烧结金属摩擦材料[J]. 机械工程材料, 2000, 31(1): 98-99. YANG Yonglian. Sintered metal friction materials[J]. Materials for Mechanical Engineering, 2000, 31(1): 98-99. [6] 钟志钢, 邓海金, 李明, 等. Fe 含量对Cu 基金属陶瓷摩擦材料摩擦磨损性能的影响[J]. 材料工程, 2002(8): 17-19. ZHONG Zhigang, DENG Haijin, LI Ming, et al.Effect of Fe content on friction and wear properties of Cu-ceramet friction materials[J]. Journal of Materials Engineering, 2002(8): 17-19. [7] 刘伯威, 樊毅, 张金生, 等. SiO2和SiC 对Cu-Fe基烧结摩擦材料性能的影响[J]. 中国有色金属学报, 2001, 11(1): 110- 113. LIU Bowei, FAN Yi, ZHANG Jinsheng, et al. Effect of SiO2 and SiC on properties of Cu-Fe matrix sintered friction materials[J]. The Chinese Journal of Nonferrous Metals, 2001, 11(1): 110-113. [8] TJONG S C, LAU K C.Tribological behavior of SiC particle reinforced copper matrix composites[J]. Materials Letters, 2000, 43(5): 274-280. [9] 姚萍屏, 盛红超, 熊翔, 等. 压制压力对铜基粉末冶金刹车材料组织和性能的影响[J]. 粉末冶金材料科学与工程, 2006, 11(4): 239-243. YAO Pingping, SHENG Hongchao, XIONG Xiang, et al. Effect of compaction pressure on microstructures and properties of Cu-based P/M brake materials[J]. Materials Science and Engineering of Powder Metallurgy, 2006, 11(4): 239-243. [10] ASIF M, CHANDRA K, MISRA P S.Characterization of iron based hot powder brake pads for heavy duty applications[J]. International Journal of Mechanical and Materials Engineering, 2013, 8(2): 94-104. [11] 钟志刚, 邓海金, 李明, 等. 铜基金属陶瓷摩擦材料与钢背的结合强度研究[J]. 粉末冶金技术, 2002, 20(3): 158-161. ZHONG Zhigang, DENG Haijin, LI Ming, et al. Study on the bond strength between Cu-based ceramet friction material and steel backing[J]. Powder Metallurgy Techonology, 2002, 20(3): 158-161. [12] 郭廷玮. 金属材料的高温强度[M]. 北京: 科学出版社, 1983: 22-35. GUO Tinwei. High Temperature Strength of Metallic Materials [M]. Beijing: Science Press, 1983: 22-35. [13] 袁国洲, 刘华一. 粉末冶金航空刹车材料过渡层功能的研究[J]. 湖南冶金, 1993(5): 10-12. YUAN Guozhou, LIU Huayi. Study on transition layer of powder metallurgy brake materials[J]. Hunan Metallurgy,1993, 5(9): 10-12. [14] 袁国洲, 刘华一. 粉末冶金摩擦材料及对偶材料支承钢背镀层的研究[J]. 湖南冶金, 1999(1): 10-13. YUAN Guozhou LIU Huayi. Study on coated layer of supporting steel back of powder metalurgical friction material and rotator material[J]. Hunan Metallurgy, 1999, 1(1): 10-13. [15] 费多尔钦科, И М. 现代摩擦材料[M]. 徐润泽, 译. 北京: 冶金工业出版社, 1983: 5-30. ΦЕДОРЧЕНКО И М. Modern Friction Material[M]. XU Runze, Translate. Beijing: Metallurgical Industry Press, 1983: 5-30. [16] NATESAN K, KASSNER T F.Thermodynamics of carbon in nickel, iron-nickel and iron-chromium-nickel alloys[J]. Metallurgical Transactions, 1973, 4(11): 2557-2566. [17] OKAMOTO H, MASSALSKI T B.Binary Alloy Phase Diagram[M]. OH, USA: ASM International, Materials Park, 1990: 1560-1566. [18] 印红羽, 张华诚. 粉末冶金模具设计手册[M]. 北京: 机械工业出版社, 2002. YIN Hongyu, ZHANG Huacheng. Design Manual of Powder Metallurgy Die[M]. Beijing: China Machine Press, 2002.