Abstract:Y2O3 was mechanical milled by planetary ball mill and its particle size, morphology and the microstructure evolution were systematically investigated by XRD, SEM and TEM. The results show that raw Y2O3 powder has cubic structure, and undergoes crushing, flaky and structure transforming during mechanical milling because of the collision effects of high energy milling balls. Raw Y2O3 powder with bimodal distribution is crushed, refined and dispersed completely, and its particle size shows a single peak and lognormal distribution after mechanical milling for 60 h. The cubic structure Y2O3 powder was destroyed and formed small scaled lattice defects during mechanical milling. The lattice defects region expands to a composite structure which consist of amorphous and nano-grains, and finally completely transformed into amorphous structure. The Y2O3 powders transform to irregular bulk structure and short rod structure after mechanical milling for 60 h. The irregular bulk structure is composite structure which consist of amorphous matrix and a few nano-grains, and the short rod structure is completely amorphous.
[1] 李明, 周张健, 廖璐, 等. ODS铁素体钢中弥散氧化物的研究进展[J]. 材料导报, 2010, 24(8): 94-98. LI Ming, ZHOU Zhangjian, LIAO Lu, et al.Research progress of dispersed oxides in ODS ferritic steels[J]. Materials Review, 2010, 24(8): 94-98. [2] 章林, 曲选辉, 何新波, 等. ODS铁素体钢的研究进展[J]. 材料科学与工程学报, 2009, 27(4): 639-643. ZHANG Lin, QU Xuanhui, HE Xinbo, et al.Research progress of ODS ferrite steels[J]. Journal of Materials Science and Engineering, 2009, 27(4): 639-643. [3] 陈文婷, 熊惟浩, 张修海. Y2O3含量和烧结温度对ODS镍基合金性能的影响[J]. 稀有金属材料与工程, 2010, 39(1): 112-116. CHEN Wenting, XIONG Weihao, ZHANG Xiuhai.Effect of Y2O3 content and sintering temperature on mechanical properties of ODS nickel-based superalloy[J]. Rare Metal Materials and Engineering, 2010, 39(1): 112-116. [4] 张刘杰. 气雾化粉末制备铁基高温合金的组织和性能研究[D]. 长沙: 中南大学, 2011. ZHANG Liujie.Microstructure and mechanical properties of an iron-based superalloy by gas atomization[D]. Changsha: Central South University, 2011. [5] 徐延龙, 罗骥, 郭志猛, 等. 内氧化法制备MgO弥散强化铁基材料[J]. 粉末冶金材料科学与工程, 2015, 20(3): 431-437. XU Yanlong, LUO Ji, GUO Zhimeng, et al.Preparation of MgO dispersion strengthening ferrous materials by internal oxidation[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(3): 431-437. [6] RIEKEN J R, ANDERSON I E, KRAMER M J, et al.Reactive gas atomization processing for Fe-based ODS alloys[J]. Journal of Nuclear Materials, 2012, 428(1/3): 65-75. [7] 郭旸, 刘祖铭, 苏鹏飞, 等. 氮化物弥散强化铁基合金的显微组织和力学性能研究[J]. 粉末冶金技术, 2016, 34(5): 361-367. GUO Yang, LIU Zuming, SU Pengfei, et al.Microstructure and mechanical properties of nitride dispersion strengthened ferrite-based alloy[J]. Powder Metallurgy Technology, 2016, 34(5): 361-367. [8] BENJAMIN J S.Dispersion strengthened superalloys by mechanical alloying[J]. Metallurgical Transactions, 1970, 1(10): 2943-2951. [9] DOUSTI B, MOJAVER R, SHAHVERDI H R, et al.Microstructural evolution and chemical redistribution in Fe-Cr-W-Ti-Y2O3 nanostructured powders prepared by ball milling[J]. Journal of Alloys and Compounds, 2013, 577: 409-416. [10] OKSIUTA Z, LEWANDOWSKA M, KURZYDŁOWSKI K J. Mechanical properties and thermal stability of nanostructured ODS RAF steels[J]. Mechanics of Materials, 2013, 67(6): 15-24. [11] ODETTE G R, ALINGER M J, B D Wirth. Recent developments in irradiation-resistant steels[J]. Annual Review of Materials Research, 2008, 38(1): 471-503. [12] MILLER M K, RUSSELL K F, HOELZER D T.Characterization of precipitates in MA/ODS ferritic alloys[J]. Journal of Nuclear Materials, 2006, 351(1-3): 261-268. [13] MCCLINTOCK D A, SOKOLOV M A, HOELZER D T, et al.Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT[J]. Journal of Nuclear Materials, 2009, 392(2): 353-359. [14] MAZIASZ P J, LARSON D J, KIM I S.Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti+Y2O3 ferritic alloy[J]. Scripta Materialia, 2001, 44(2): 359-364. [15] GILMAN P S, BENJAMIN J S.Mechanical alloying[J]. Annual Review of Materials Research, 1983, 39(13): 279-300. [16] YEW L P, LUNG Y J, MING L H.Amorphization behaviour in mechanically alloyed Ni-Ta powders[J]. Journal of Materials Science, 1998, 33(1): 235-239. [17] SURYANARAYANA C.Mechanical alloying and milling[J]. Progress in Materials Science, 2004, 46(1): 1-184. [18] SKRIKANTH V, SATO A, YOSHIMOTO J, et al.Synthesis and crystal structure study of Y2O3 high-pressure polymorph[J]. Crystal Research and Technology, 1994, 29(7): 981-984. [19] HUSSON E, PROUST C, GILLET P, et al.Phase transitions in yttrium oxide at high pressure studied by Raman spectroscopy[J]. Materials Research Bulletin, 1999, 34(12): 2085-2092. [20] OKUDA T, FUJIWARA M.Dispersion behaviour of oxide particles in mechanically alloyed ODS steel[J]. Journal of Material Science Letters, 1995, 14(22): 1600-1603. [21] YAMASHITA S, OHTSUKA S, AKASAKA N, et al.Formation of nanoscale complex oxide particles in mechanically alloyed ferritic steel[J]. Philosophical Magazine Letters, 2004, 84(8): 525-529. [22] SAKASEGAWA H, CHAFFRON L, LEGENDRE F, et al.Correlation between chemical composition and size of very small oxide particles in the MA957 ODS ferritic alloy[J]. Journal of Nuclear Materials, 2009, 384(2): 115-118. [23] GUO H, YAN P F, WANG Y B, et al.Tensile ductility and necking of metallic glass[J]. Nature Materials, 2007, 6(10): 735-739.