Microstructure and mechanical property of 7056 aluminum alloy produced by spark plasma sintering
HUANG Lanping1,2,3, HE Jun1, LI Song1, CHEN Songyi4, CHEN Kanghua1,2,4
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. Key Laboratory of Lightweight High Strength Structural Materials, Central South University, Changsha 410083, China; 3. Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou, 213164, China; 4. Light Alloy Research Institute, Central South University, Changsha 410083, China
Abstract:The bulk ultra-high strength 7056 aluminum alloys were prepared by spark plasma sintering (SPS) combined with nitrogen atomization process. The effects of sintering temperatures on the density, microstructure and mechanical properties of this consolidated alloy were studied. The results showed that the gas-atomized 7056 aluminum alloy particles of an average of 43.4 μm exhibited a cellular-like dendritic structure with a grain size of about 1-2 μm, obvious solute element segregation was found at grain boundaries. The nearly full dense bulk body could be obtained by spark plasma sintering. It was the yield strength maxium of 284.7 MPa of the consolidated alloy during compression when the sintering temperature was 480 ℃. With the increase of sintering temperature, the yield strength during compression first increased and then decreased. The mechanical properties of the consolidated alloy could be obviously enhanced after solution and aging treatment, the yield strength of alloy was amaxium of 575.9 MPa as sintering temperature was 420 ℃, and gradually decreased with the increase of sintering temperature.
[1] DURSUN T, SOUTIS C.Recent developments in advanced aircraft aluminum alloys[J]. Materials & Design, 2014, 56(4): 862-871. [2] 刘俊涛, 张永安, 李锡武, 等. 新型7056铝合金双级时效的显微组织和性能[J]. 中国有色金属学报, 2016, 26(9): 1850-1858. LIU Juntao, ZHANG Yongan, LI Xiwu, et al.Microstructure and properties of the new 7056 aluminum alloy two-stage aging[J]. Chinese Journal of Nonferrous Metals, 2016, 26(9): 1850-1858. [3] AMS 4407. Aluminum alloy, plate (7056-T7651) 9.1Zn-1.6Cu- 1.9Mg solution heat treated, stress relieved, and overaged[S]. Pennsylvania, US: SAE International, 2007. [4] WARNER T, SIGLI C, BES B.Al-Zn-Mg-Cu alloys and products with improved ratio of static mechanical characteristics to damage tolerance: US[P]. US 7550110. 2009. [5] 方华婵, 陈康华, 巢宏, 等. Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J]. 粉末冶金材料科学与工程, 2009, 14(6): 351-358. FANG Huachan, CHEN Kanghua, CHAO Hong, et al.Research Status and prospect of Al-Zn-Mg-Cu super-strength aluminum alloy[J]. Powder Metallurgy Materials Science and Engineering, 2009, 14(6): 351-358. [6] 张文静, 任伟才, 邓桢桢. Zr元素对超高强铝合金微观组织及力学性能的影响[J]. 有色金属加工, 2013, 42(4): 8-11. ZHANG Wenjing, REN Weicai, DENG Zhenzhen.Effect of Zr element on microstructure and mechanical properties of ultra high strength aluminum alloy[J]. Non-ferrous Metal Processing, 2013, 42(4): 8-11. [7] FRINDLYANDER H.变形结构铝合金[M]. 刘静安, 译. 重庆: 科学技术出版社重庆分社, 1989: 28-29. FRINDLYANDER H.Deformed Structure Aluminum Alloy[M]. LIU Jinan, trans. Chongqing: Science and Technology Press Chongqing Branch, 1989: 28-29. [8] MONDOLFO L F.Aluminum Alloys: Structure and Properties[M]. London: Burrer-Worths, 1976: 842. [9] SHEPPARD T, Extrusion of Aluminum Alloys[M]. London: Kluwer Academic Publisher, 1999: 16-18. [10] 王祝堂, 田荣璋. 铝合金及其加工手册[M]. 长沙: 中南大学出版社, 2000: 64-65. WANG Zhutang, TIAN Rongzhang.Aluminum Alloy and Its Processing Manual[M]. Changsha: Central South University Press, 2000: 64-65. [11] OMORI M.Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS)[J]. Material Science and Engineering: A, 2000, 44(17): 183-188. [12] 陈汉宾, 程军胜, 杨滨, 等. 放电等离子烧结制备Al-Zn-Mg- Cu纳米晶合金的组织[J]. 北京科技大学学报, 2007, 29(3): 293-297. CHEN Hanbin, CHENG Junsheng, YANG Bin, et al.Preparation of Al-Zn-Mg-Cu nanocrystalline alloy by spark plasma sintering[J]. Journal of Beijing University of Science and Technology, 2007, 29(3): 293-297. [13] ZHAN G D, KUNTZ J, WAN J, et al.Alumina-based nanocomposites consolidated by spark plasma sintering[J]. Scripta Materialia, 2002, 47(11): 737-741. [14] QUEUDET H, LEMONNIER S, BARRAUD E, et al.Effect of heat treatments on the microstructure of an ultrafine-grained Al-Zn-Mg alloy produced by powder metallurgy[J]. Material Science and Engineering A, 2017, 685(8): 71-78. [15] 滕海涛, 熊柏青, 张永安, 等. 高Zn含量 Al-Zn-Mg-Cu 系铝合金的凝固态显微组织[J]. 中国有色金属学报, 2015, 25(4): 852-865. TENG Haitao, XIONG Baiqing, ZHANG Yongan, et al.Solidification microstructure of Al-Zn-Mg-Cu aluminum alloy with high Zn content[J]. Chinese Journal of Nonferrous Metals, 2015, 25(4): 852-865. [16] 王少卿, 于化顺, 王海涛. 气体雾化Al-Zn-Mg-Cu铝合金粉末的形貌及组织性能研究[J]. 粉末冶金材料科学与工程, 2010, 28(1): 12-15. WANG Shaoqing, YU Huashun, WANG Haitao.Morphology and microstructure of gas atomized Al-Zn-Mg-Cu aluminum alloy powder[J]. Powder Metallurgy Materials Science and Engineering, 2010, 28(1): 12-15. [17] KRAUS N P, HEXEMER JR R L, DONALDSON I W, et al. Consolidation of aerospace grade aluminum 7055 powder through SPS-forge processing[J]. Canadian Metallurgical Quarterly, 2017 56(2): 137-147.