Effects of magnesium oxide and calcium carbonate mineralizers on the performance of porous alumina ceramic
CHEN Guang1,3, WANG Wei2, LIANG Lixing1,3, PENG Yonghui1,3, ZHOU Wentao1,3, OUYANG Jing1,3, WANG Zhiguo2
1. Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China; 2. Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China; 3. Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
Abstract:TiO2, MgO and CaCO3 were selected as mineralizing agents for porous alumina ceramics, which were prepared by atmospheric sintering under air atmosphere. The effects of different contents of MgO, CaCO3 and holding time on the bending strength at room temperature, sintering shrinkage rate, apparent porosity and dissolving efficiency were studied. The results show that the addition of mineralizing agents MgO and CaCO3 can decrease the shrinkage rate, bending strength at room temperature and density, and increase the apparent porosity and the dissolving efficiency. The shrinkage rate of the samples containing MgO decreases from 1.75% to 0.21% after 1 320 ℃/3 h sintering, and the apparent porosity increases from 33.49% to 36.86%. The shrinkage of the samples containing MaO decreases from 1.88% to 0.38% after 1 320 ℃/6 h sintering, and the apparent porosity increases from 32.94% to 35.46%. The shrinkage rate of the samples containing CaCO3 decreases from 0.55% to -0.50% after 1 320 ℃/3 h sintering, and the porosity increases from 35.47% to 41.26%. The shrinkage of the samples containing CaCo3 decreases from 1.16% to -0.21% after 1 320 ℃/6 h sintering, and the apparent porosity increases from 35.96% to 42.44%. When the holding time of heating treatment is extended from 3 h to 6 h, the shrinkage rate of the samples containing mineralizing agent MgO and CaCO3 increases, while the bending strength at room temperature do not change significantly. The apparent porosity of the samples containing MgO decreases and that of the sample containing CaCO3 increases. MgO and CaCO3 can significantly improve the dissolving efficiency. The quality of the samples containing only mineralizing agent TiO2 is almost unchanged after 72 h of boiling in alkaline liquid (adding cosolvent LiF), the samples containing MgO can be completely dissolved after 24 h of boiling in alkaline liquid (no cosolvent added), and the samples containing CaCO3 can be completely dissolved after 72 h of boiling in alkaline liquid (adding cosolvent).
[1] 安迪, 杜景红, 邱哲生, 等. 发泡剂对多孔氧化铝陶瓷孔结构和抗弯强度的影响[J]. 硅酸盐通报, 2020, 39(7): 2248-2252. AN Di, DU Jinghong, QIU Zhesheng, et al.Effect of foaming agent on pore structure and bending strength of porous alumina ceramics[J]. Bulletin of the Chinese Ceramics Society, 2020, 39(7): 2248-2252. [2] 袁绮, 谭划, 杨廷旺, 等. 多孔陶瓷的制备方法及研究现状[J]. 硅酸盐通报, 2021, 40(8): 2687-2701. YUAN Qi, TAN Hua, YANG Tingwang, et al.Preparation methods and research status of porous ceramics[J]. Bulletin of the Chinese Ceramics Society, 2021, 40(8): 2687-2701. [3] KIM Y H, YEO J G, CHOI S C.Shrinkage and flexural strength improvement of silica-based composites for ceramic cores by colloidal alumina infiltration[J]. Ceramics International, 2016, 42(7): 8878-8883. [4] PAN Z, GUO J, LI S, et al.Experimental study on high temperature performances of silica-based ceramic core for single crystal turbine blades[J]. Ceramics International, 2022, 48(1): 548-555. [5] SONG K, WU S, CHEN X.Effects of Y2O3 addition on microwave dielectric characteristics of Al2O3 ceramics[J]. Materials Letters, 2007, 61(16): 3357-3360. [6] LEVIN I, BRANDON D.Metastable alumina polymorphs: crystal structures and transition sequences[J]. Journal of the American Ceramic Society, 1998, 81(8): 1995-2012. [7] 冯波. 三位置掺杂对BiCuSeO功能陶瓷热电性能的影响[J]. 粉末冶金材料科学与工程, 2021, 26(4): 306-312. FENG Bo.Effect of three-position doping on thermoelectric properties of BiCuSeO based functional ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(4): 306-312. [8] 孟姗姗, 王安英, 徐东昌, 等. 注浆成形氧化铝陶瓷料浆的工艺控制[J]. 山东陶瓷, 2020, 43(5): 11-13. MENG Shanshan, WANG Anying, XU Dongchang, et al.Process control of alumina ceramic slurry by grouting[J]. Shandong Ceramics, 2020, 43(5): 11-13. [9] KOHATSU I, BRINDLEY G .Solid state reactions between CaO and α-Al2O3[J]. Zeitschrift Für Physikalische Chemie, 1968, 60(1/6): 79-89. [10] AN L, HA H C, CHAN H M.High‐strength alumina/alumina: calcium-hexaluminate layer composites[J]. Journal of the American Ceramic Society, 1998, 81(12): 3321-3324. [11] 覃业霞, 杜爱兵, 张睿, 等. 精密铸造用氧化铝基复合陶瓷型芯[J]. 稀有金属材料与工程, 2007, 36(1): 774-776. TAN Yexia, DU Aibing, ZHANG Rui, et al.Alumina base composite ceramic core for precision casting[J]. Rare Metal Materials and Engineering, 2007, 36(1): 774-776. [12] 曾岩. Y2O3与方石英对氧化硅陶瓷型芯性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2014. ZENG Yan.Effect of Y2O3 and cristobalite on performance of silica ceramic core[D]. Harbin: Harbin Institute of Technology, 2014. [13] SARKAR R, BANNERJEE G .Effect of addition of TiO2 on reaction sintered MgO-Al2O3 spinels[J]. Journal of the European Ceramic Society, 2000, 20(12): 2133-2141. [14] 易帅. CaAl12O19及其复相材料的制备与性能研究[D]. 北京: 中国地质大学, 2015. YI Shuai.Preparation and properties of CaAl12O19 and its multiphase materials[D]. Beijing: China University of Geosciences, 2015. [15] GANESH I.A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applocations[J]. International Reviews, 2013, 58(2): 63-112. [16] JORGENSEN P.Modification of sintering kinetics by solute segregation in Al2O3[J]. Journal of the American Ceramic Society, 1965, 48(4): 207-210. [17] ASCHAUER U, BOWEN P, PARKER S.Oxygen vacancy diffusion in alumina: new atomistic simulation methods applied to an old problem[J]. Acta Materialia, 2009, 57(16): 4765-4772. [18] 张鲁, 刘陆群, 唐赛, 等. 温度和晶粒尺寸及分布影响下的氧化铝纤维烧结晶粒长大的相场模拟[J]. 粉末冶金材料科学与工程, 2021, 26(4): 320-328. ZHANG Lu, LIU Luqun, TANG Sai, et al.Phase field simulation of grain growth in alumina fiber sintering under the influences of temperature and grain size and distribution[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(4): 320-328. [19] 梁坚伟, 黄梅鹏, 刘伟, 等. MgO与Y2O3共掺杂对透明氧化铝陶瓷组织与性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(6): 557-562. LIANG Jianwei, HUANG Meipeng, LIU Wei, et al.Effect of co-doping of MgO and Y2O3 on the structure and properties of transparent alumina ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(6): 557-562. [20] NAGHIZADEH R, REZAIE H, GOLESTANI-FARD F.Effect of TiO2 on phase evolution and microstructure of MgAl2O4 spinel in different atmospheres[J]. Ceramics International, 2011, 37(1): 349-354. [21] 苗义民, 刘亮光. 压力和SiC含量对热压烧结hBN陶瓷的致密性及力学性能的影响[J]. 陶瓷学报, 2022, 43(4): 637-643. MIAO Yimin, LIU Liangguang.Effect of pressure and SiC content on compactness and mechanical properties of hot-pressing sintered hBN ceramics[J]. Chinese Journal of Ceramics, 2022, 43(4): 637-643. [22] 方豪杰, 刘秋宇, 贺亦文, 等. 镁铝尖晶石对95氧化铝陶瓷显微结构与力学性能的影[J]. 粉末冶金材料科学与工程, 2020, 25(4): 338-343. FANG Haojie, LIU Qiuyu, HE Yiwen, et al.Effect of magnesium aluminate spinel on the microstructures and mechanical properties of 95 alumina ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(4): 338-343. [23] 孙阳, 徐鲲濠, 孙加林, 等. MgO烧结助剂对氧化铝多孔陶瓷结构和性能的影响[J]. 硅酸盐学报, 2015, 43(9): 1255-1260. SUN Yang, XU Kunhao, SUN Jialin, et al.Effect of MgO sintering additives on structure and properties of porous alumina ceramics[J]. Journal of the Chinese Ceramic Society, 2015, 43(9): 1255-1260. [24] 亢静锐, 董桂霞, 韩伟丹, 等. 烧结助剂中CaO质量分数及烧结温度对氧化铝基微波陶瓷性能的影响[J]. 粉末冶金技术, 2018, 36(1): 9-15. KANG Jingrui, DONG Guixia, HAN Weidan, et al.Effect of CaO mass fraction and sintering temperature on properties of alumina based microwave ceramics[J]. Powder Metallurgy Technology, 2018, 36(1): 9-15. [25] KIM J H, LEE S, LEE K S, et al.The effect of grain boundary phase on contact damage resistance of alumina ceramics[J]. Journal of Materials Science, 2004, 39(23): 7023-7030. [26] 吴婷婷. 稀土氧化物对高铝陶瓷耐磨性和耐酸性影响机理的研究[D]. 武汉: 武汉理工大学, 2017. WU Tingting.Effect of rare earth oxides on wear resistance and acid resistance of high alumina ceramics[D]. Wuhan: Wuhan University of Technology, 2017. [27] 罗凌, 芦刚, 严青松, 等. 氧化铝基陶瓷型芯溶失性的研究进展[J]. 特种铸造及有色合金, 2021, 41(3): 305-309. LUO Ling, LU Gang, YAN Qingsong, et al.Research progress on solubility loss of alumina base ceramic core[J]. Special Casting and Non-Ferrous Alloys, 2021, 41(3): 305-309. [28] COBLE R L. Transparent alumina and method of preparation: US3026210[P].1962-03-20. [29] 谢静, 顾华志, 段辉, 等. 富铝镁铝尖晶石质耐火材料的抗碱侵蚀性能[J]. 稀有金属材料与工程, 2015, 44(S1): 447-450. XIE Jing, GU Huazhi, DUAN Hui, et al.Alkali erosion resistance of aluminum-rich magnesia alumina spinel refractory[J]. Rare Metal Materials and Engineering, 2015, 44(S1): 447-450. [30] 王铎, 陈招科, 何宗倍, 等. 致密化温度及界面类型对SiCf/SiC Mini复合材料结构与力学性能的影响[J]. 粉末冶金材料科学与工程, 2022, 27(4): 389-397. WANG Duo, CHEN Zhaoke, HE Zongbei, et al.Influence of densification temperature and interface type on the structure and mechanical properties of SiCf/SiC Mini composites[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(4): 389-397. [31] 王宝生, 成来飞, 张立同, 等. 氧化铝基陶瓷型芯的脱芯工艺研究[J]. 铸造, 2005(8): 758-760. WANG Baosheng, CHENG Laifei, ZHANG Litong, et al.Research on de-cored process of alumina based ceramic core[J]. Casting, 2005(8): 758-760.