Microstructure and wear-corrosion resistance performance of laser cladding martensite/ferrite coating
ZHANG Lei1,2, CHEN Xiaoming1,2, HUO Jiaxiang1, ZHANG Kai1,2, CAO Wenjing1,2, CHENG Xinchuang3
1. Key Laboratory of Surface Engineering of Equipment for Hydraulic Engineering of Zhejiang Province, Standard & Quality Control Research Institute, Ministry of Water Resources, Hangzhou 310012, China; 2. Water Machinery and Remanufacturing Technology Engineering Laboratory of Zhejiang Province, Hangzhou Mechanical Research Institute, Ministry of Water Resources, Hangzhou 310012, China; 3. Shaoxing Municipal Cao’e River Floodgate Construction Administration Committee, Shaoxing 312000, China
Abstract:To improve the corrosion resistance and wear resistance of piston rod, Fe-based coatings with martensite and ferrite structure were prepared on 45# steel by laser cladding. The phase compositions, microstructure and elements distribution of the coatings were characterized by X-ray diffractometer, scanning electron microscope and X-ray energy dispersive spectrometer. The microhardness and wear resistance of the coatings were tested by Vickers hardness tester and dry sliding friction wear tester. Furthermore, the corrosion resistance of laser cladding Fe-based coatings was studied by electrochemical workstation. The results show that the phase of laser cladding Fe-based alloy coating is mainly composed of α-Fe, Ni-Cr-Fe, γ-(Fe,C), Fe9.7Mo0.3. The main microstructure is martensite, ferrite and a small amount of residual austenite. The dendritic structure of coating is uniform, compact, without cracks or pores. The coating and the substrate are bonded metallurgically. The hardness and wear resistance of the coatings increase with increasing laser power. The average microhardness (HV) of the coatings at 2.4 kW is as high as 647.64 and the wear resistance is 9.37 times that of 45 steel. The wear mechanisms of the coatings are abrasive wear. The corrosion resistance of laser cladding Fe-based alloy coating firstly increases and then decreases with the increase of laser power. When the laser power is 2.0 kW, the coating has the best corrosion resistance, which is significantly higher than the commonly used carbon steel, stainless steel and electroplating hard for piston rods. It can replace electroplated chromium in related fields.
[1] 程相榜, 孟贺超, 张自强. 液压千斤顶活塞杆用激光熔覆研究进展[J]. 表面技术, 2017, 46(6): 249-255. CHENG Xiangbang, MENG Hechao, ZHANG Ziqiang.Laser cladding for piston rods of hydraulic Jacks[J]. Surface Technology, 2017, 46(6): 249-255. [2] 张磊, 陈小明, 毛鹏展, 等. 沿海水闸液压活塞杆激光熔覆替代电镀镍铬的研究现状及展望[J]. 材料保护, 2019, 52(5):121-124. ZHANG Lei, CHEN Xiaoming, MAO Pengzhan, et al.Research status and forecast on laser-cladding coating as candidate to electroplating nickel and chromium for hydraulic piston rod of coastal sluice[J]. Materials Protection, 2019, 52(5): 121-124. [3] FLITNEY B.Alternatives to chrome for hydraulic actuators[J]. Sealing Technology, 2007(10): 8-12. [4] TUOMINEN J, NӒKKI J, PAJUKOSKI H, et al. Wear and corrosion resistant laser coatings for hydraulic piston rods[J]. Journal of Laser Applications, 2015, 27(2): 022009. [5] 邵延凡, 王泽华, 李潇, 等. 双相不锈钢表面激光熔覆钴基合金组织和性能研究[J]. 表面技术, 2020, 49(4): 299-305. SHAO Yanfan, WANG Zehua, LI Xiao, et al.Microstructure and properties of laser cladding Co-based alloys on duplex stainless steel[J]. Surface technology, 2020, 49(4): 299-305. [6] 余廷, 邓琦林, 董刚, 等. 钽对激光熔覆镍基涂层的裂纹敏感性及力学性能的影响[J]. 机械工程学报, 2011, 47(22):25-30. YU Ting, DENG Qilin, DONG Gang, et al.Influence of Ta on crack susceptibility and mechanical properties of laser clad Ni-based coating[J]. Journal of Mechanical Engineering, 2011, 47(22): 25-30. [7] 申卫国, 方艳, 董玲, 等. 液压支架激光熔覆不锈钢合金涂层的实验研究[J]. 中国机械工程, 2015, 26(18): 2533-2538. SHEN Weiguo, FANG Yan, DONG Ling, et al.Experimental study of stainless steel alloy coating fabricated by laser cladding onto hydraulic support[J]. China Mechanical Engineering, 2015(18): 2533-2538. [8] 徐鹏, 董梁, 鞠恒, 等. 激光熔覆304不锈钢涂层的组织及耐蚀性[J]. 材料热处理学报, 2014, 35(s1): 221-225. XU Peng, DONG Liang, JU Heng, et al.Microstructure and corrosion resistance of 304 stainless steel coating by laser cladding[J]. Transactions of Materials and Heat Treatment, 2014, 35(s1): 221-225. [9] 杨庆东, 苏伦昌, 董春春, 等. 液压支架立柱27SiMn激光熔覆铁基合金涂层的性能[J]. 中国表面工程, 2013, 26(6): 42-47. YANG Qingdong, SU Lunchang, DONG Chunchun, et al.Properties of Fe-based alloy cladding layers on hydraulic support column steel 27SiMn[J]. China Surface Engineering, 2013, 26(6): 42-47. [10] 尹泉, 彭如恕, 朱红梅. 激光熔覆原位生成增强相强化铁基涂层性能研究[J]. 表面技术, 2016, 45(4): 99-104. YIN Quan, PENG Rushu, ZHU Hongmei, et al.Performance improvement of iron base coating by laser cladding in-situ generated reinforced phase[J]. Surface Technology, 2016, 45(4): 99-104. [11] ABIOYE T E, FARAYIBI P K, MCCARTENY D G, et al.Effect of carbide dissolution on the corrosion performance of tungsten carbide reinforced Inconel 625 wire laser coating[J]. Journal of Materials Processing Technology, 2016, 231: 89-99. [12] HAO X, ZHAO X, CHEN H, et al.Comparative study on corrosion behaviors of ferrite-pearlite steel with dual-phase steel in the simulated bottom plate environment of cargo oil tanks[J]. Journal of Materials Research and Technology, 2021(12): 399-411. [13] 朱红梅, 李勇作, 张振远, 等. 激光熔覆制备马氏体/铁素体双相不锈钢层的力学与腐蚀性能研究[J]. 中国激光, 2018, 45(12): 142-147. ZHU Hongmei, LI Yongzuo, ZHANG Zhenyuan, et al.Mechanical and corrosion properties of martensite/ferrite duplex stainless steel prepared via laser cladding[J]. Chinese Journal of Lasers, 2018, 45(12): 142-147. [14] ZHU H M, LI Y Z, LI B C, et al.Effects of low-temperature tempering on microstructure and properties of the laser-Cladded AISI 420 martensitic stainless steel coating[J]. Coatings, 2018, 8(12): 451-455. [15] 张伟, 姚建华, 张利春. 激光熔覆原位生成VC-Fe3C/Fe-Ni复合涂层的组织与性能[J]. 复合材料学报, 2017, 34(1): 142-151. ZHANG Wei, YAO Jianhua, ZHANG Lichun.Microstructure and properties of in-situ synthesized VC-Fe3C/Fe-Ni composite coating made by laser cladding[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 142-151. [16] 王晓荣, 王新洪, 侍国文, 等. 硼对激光熔覆Fe-Ti-V-C合金系组织和性能的影响[J]. 中国激光, 2010, 37(7): 1903-1907. WANG Xiaorong, WANG Xinhong, SHI Guowen, et al.Effect of boron element on the microstructure and property of laser cladding Fe-Ti-V-C alloy system[J]. Chinese Journal of Lasers, 2010, 37(7): 1903-1907. [17] 朱福栋, 朱必云, 马长平. 激光增材制造Co/WC增强Ni基复合涂层的组织与耐磨性能[J]. 材料热处理学报, 2019, 40(9):142-148. ZHU Fudong, ZHU Biyun, MA Changping.Microstructure and wear resistance of Co/WC enhanced Ni-based composite coating by laser additive manufacturing[J]. Transactions of Materials and Heat Treatment, 2019, 40(9): 142-148. [18] 朱红梅, 胡际鹏, 李柏春, 等. 原位回火对马氏体不锈钢激光熔覆涂层的影响[J]. 表面技术, 2020, 49(11): 303-308. ZHU Hongmei, HU Jipeng, LI Baichun, et al.Effect of tempering temperature on microstructure and properties of laser cladded martensitic stainless steel layer[J]. Surface Technology, 2020, 49(11): 303-308. [19] 李桂花, 邹勇, 邹增大, 等. 激光熔覆原位生成Nb2(C,N)及V8C7陶瓷粒子增强铁基金属涂层[J]. 材料工程, 2012(1): 29-33. LI Guihua, ZOU Yong, ZOU Zengda, et al.In-situ Synthesized Nb2(C,N) and V8C7 ceramics particulates reinforced Fe-based composite coating by laser cladding[J]. Journal of Materials Engineering, 2012(1): 29-33. [20] 文平, 李春福, 赵毅, 等. Cr, Mo, Ni在α-Fe(C)中占位、键合性质及合金化效应的第一性原理研究[J]. 物理学报, 2014, 63(19): 280-287. WEN Ping, LI Chunfu, ZHAO Yi, et al.First principles calculation of occupancy, bonding characteristics and alloying effect of Cr, Mo, Ni in bulk α-Fe(C)[J]. Acta Physica Sinica, 2014, 63(19): 280-287. [21] 李允东, 董刚, 姚建华. 激光修复28CrMoNiV钢热影响区的组织演变[J]. 中国激光, 2016, 43(8): 147-152. LI Yundong, DONG Gang, YAO Jianhua.Microstructure evolution of heat-Affected zones of 28CrMoNiV steel repaired by lasers[J]. Chinese Journal of Lasers, 2016, 43(8): 147-152. [22] 张磊, 陈小明, 刘伟, 等. 激光熔覆Ni基合金裂纹的形成机理及敏感性[J]. 激光与光电子学进展, 2019, 56(11): 168-175. ZHANG Lei, CHEN Xiaoming, Liu Wei, et al.Study on the mechanism and sensitivity of cracks in laser cladding Ni-based alloy coatings[J]. Laser & Optoelectronics Progress, 2019, 56(11): 168-175. [23] 曾维华, 刘洪喜, 王传琦, 等. 工艺参数对不锈钢表面激光熔覆Ni基涂层组织及耐腐蚀性能的影响[J]. 材料工程, 2012(8): 24-29. ZENG Weihua, LIU Hongxi, WANG Chuanqi, et al.Effects of technological parameters on microstructure and corrosion resistance of laser cladding Ni-based coating on stainless steel surface[J]. Journal of Materials Engineering, 2012(8): 24-29. [24] 张松, 李丹, 崔文东, 等. 高能脉冲类激光熔覆镍基合金层的组织及性能[J]. 沈阳工业大学学报, 2017, 39(2): 132-136. ZHANG Song, LI Dan, CUI Wendong, et al.Microstructures and properties of Ni-based alloy cladding coating by high-energy pulsed like-laser[J]. Journal of Shenyang University of Technology, 2017, 39(2): 132-136. [25] HAI C, CHENG X, DU C, et al.Role of martensite structural characteristics on corrosion features in Ni-advanced dual-phase low-alloy steels[J]. Acta Metallurgica Sinica, 2020, 34(6): 802-812. [26] 俞树荣, 何燕妮, 李淑欣, 等. 晶粒尺寸对奥氏体不锈钢晶间腐蚀敏感性的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 70-74. YU Shurong, HE Yanni, LI Shuxin, et al.Effect of grain size on susceptibility to intergranular corrosion for austenitic stainless steel[J]. Journal of Chinese Society for Corrosion and Protection, 2013, 33(1): 70-74.