Abstract:A gradient nanostructure with grain size varied from nanocrystals to coarse grains was prepared on the surface of 316L stainless steel by surface mechanical grinding treatment (SMGT). The corrosion resistance of the gradient sample was measured by chemical immersion experiment and electrochemical corrosion test, and the effect of gradient grain size distribution on corrosion resistance of 316L stainless steel was analyzed. The results show that stable corrosion pits appeared in the nanocrystalline and coarse-grained samples after 20 h immersion, while the surface of the gradient samples remained intact after 50 h immersion. Electrochemical tests show that the corrosion potential of the gradient sample was enhanced from -230 mV (nanocrystalline sample) to -4 mV. Meanwhile, the corrosion current density decreased from 0.137 A/cm2 to 0.036 A/cm2. The grain size gradient distribution does not change the kinetics of passivation film formation. The excellent corrosion resistance of the gradient sample originates from the higher thickness and integrity, lower residual stress of the passivation film.
蔡锋, 方铁辉. 晶粒尺寸梯度分布对316L不锈钢耐腐蚀性能的影响[J]. 粉末冶金材料科学与工程, 2021, 26(3): 227-234.
CAI Feng, FANG Tiehui. Effect of gradient distribution of grain size on corrosion resistance of 316L stainless steel. Materials Science and Engineering of Powder Metallurgy, 2021, 26(3): 227-234.
[1] MEYERSM A, MISHRA A, BENSON D J.Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science, 2006, 51(4): 427-556. [2] KUMAR K, SWYGENHOVEN H V, SURESH S.Mechanical behavior of nanocrystalline metals and alloys[J]. Acta Materialia, 2003, 51(9): 5743-5774. [3] ZHUO W, SHEN L D, QIU M B, et al.Effects of flexible friction on the properties of nanocrystalline nickel prepared by jet electrodeposition[J]. Surface and Coatings Technology, 2018, 333(10): 87-95. [4] UENO H, KAKIHATA K, KANEKO Y, et al.Enhanced fatigue properties of nanostructured austenitic sus 316L stainless steel[J]. Acta Materialia, 2011, 59(18): 7060-7069. [5] LIU L, LI Y, WANG F H.Electrochemical corrosion behavior of nanocrystalline materials:A review[J]. Journal of Materials Science & Technology, 2010, 26(1): 1-14. [6] ESKANDARI M, YEGANEH M, MOTAMEDI M.Investigation in the corrosion behaviour of bulk nanocrystalline 316L austenitic stainless steel in NaCl solution[J]. Micro & Nano Letters, 2012, 7(4): 380-383. [7] RALSTON K D, BIRBILIS N, DAVIESC H J.Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 2010, 63(12): 1201-1204. [8] SALAH M B, SABOT R, REFAITP, et al. Passivation behaviour of stainless steel (UNSN-08028) in industrial or simplified phosphoric acid solutions at different temperatures[J]. Corrosion Science, 2015, 99(7): 320-332. [9] CHIANPAIROT A, LOTHONGKUM G, SCHUHC A, et al.Corrosion of nanocrystalline Ni-W alloys in alkaline and acidic 3.5%NaCl solutions[J]. Corrosion Science, 2011, 53(3): 1066-1071. [10] HOOG C, BIRBILIS N, ESTRIN Y.Corrosion of pure Mg as a function of grain size and processing route[J]. Advanced Engineering Materials, 2008, 10(6): 579-582. [11] MIYAMOTO H, HARADA K, MIMAKI T, et al.Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing[J]. Corrosion Science, 2008, 50(5): 1215-1220. [12] GEBERT A, EL-MONEIM A A, GUTFLEISCH O, et al. Corrosion behavior of textured and isotropic nanocrystalline NdFeB-based magnets[J]. IEEE Transactions on Magnetics, 2002, 38(5): 2979-2981. [13] WANG S G, LONG K, WANG F H, et al.The electrochemical corrosion of bulk nanocrystalline ingot iron in acidic sulfate solution[J]. The Journal of Physical Chemistry B, 2006, 110(1): 377-382. [14] KIM S H, AUST K T, ERB U, et al.A comparison of the corrosion behaviour of polycrystalline and nanocrystalline cobalt[J]. Scripta Materialia, 2003, 48(9): 1379-1384. [15] RALSTON K, BIRBILISN J C.Effect of grain size on corrosion: A review[J]. Corrosion, 2010, 66(7): 075005. [16] GOLLAPUDI S.Grain size distribution effects on the corrosion behaviour of materials[J]. Corrosion Science, 2012, 62(4): 90-94. [17] LIU X C, ZHANG H W, LU K.Formation of nano-laminated structure in nickel by means of surface mechanical grinding treatment[J]. Acta Materialia, 2015, 96(6): 24-36. [18] YAN F, TAO N, PAN C, et al.Microstructures and corrosion behaviors of an austenitic stainless steel strengthened by nano twinred austenitic grains[J]. Advanced Engineering Materials, 2016, 18(4): 650-656. [19] PLIETH W.Corrosion of Metals-Physicochemical Principles and Current Problems. By Helmut Kaesche[M]. Weinheim: John Wiley & Sons, Ltd, 2004: 1452-1452. [20] LI T S, LIU L, ZHANG B, et al.Passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains with embedded nano-twin bundles[J]. Corrosion Science, 2014, 85(4): 331-342. [21] PAN C, LIU L, LI Y, et al.Passive film growth mechanism of nanocrystalline 304 stainless steel prepared by magnetron sputtering and deep rolling techniques[J]. Electrochimica Acta, 2011, 56(22): 7740-7748. [22] CHAO Q, CRUZ V, THOMAS S, et al.On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel[J]. Scripta Materialia, 2017, 141(7): 94-98. [23] HORVATH J, UHLIG H H.Critical potentials for pitting corrosion of Ni, Cr-Ni, Cr-Fe, and related stainless steels[J]. Journal of the Electrochemical Society, 1968, 115(8): 791-791. [24] GUPTA R K, BIRBILISN. The influence of nanocrystalline structure and processing route on corrosion of stainless steel: A review[J]. Corrosion Science, 2015, 92(11): 1-15. [25] GUPTA R K, RAMANR K S, KOCH C C, et al.Effect of nanocrystalline structure on the corrosion of a Fe20Cr alloy[J]. International Journal of Electrochemical Science, 2013, 8(5): 6791-6806. [26] WANG Y M, CHEN M W, ZHOUF H, et al.High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419(6910): 912-915. [27] HUANG H W, WANG Z B, LU J, et al.Fatigue behaviors of aisi 316L stainless steel with a gradient nanostructured surface layer[J]. Acta Materialia, 2015, 87(12): 150-160. [28] WANG S G, SUN M, LONG K.The enhanced even and pitting corrosion resistances of bulk nanocrystalline steel in HCl solution[J]. Steel Research International, 2012, 83(8): 800-807. [29] HAO Y W I, DENG B, ZHONG C, et al. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel[J]. Journal of Iron and Steel Research International, 2009, 16(2): 68-72.