Effect of synergistic adjustment of Ba-Pb doping and grain refinement on thermoelectric property of BiCuSeO semiconductor ceramics
SU Yisi1,2, FENG Bo1,2, HU Xiaoming1,2, LIU Peihai1,2, LI Guangqiang1,2, FAN Xi’an1,2
1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; 2. National-Provincial Joint Engineering Research Center of High Temperature Materials and Lining Technology, Wuhan University of Science and Technology, Wuhan 430081, China
Abstract:The bulk Bi1-2xBaxPbxCuSeO (x=0, 0.06) oxide semiconductor ceramics doping Ba/Pb in BiCuSeO were prepared by mechanical alloying (MA) and spark plasma sintering (SPS). The effects of Ba/Pb doping and ball milling (BM) time on the microstructure, thermoelectric properties, and hardness were investigated systematically. The results show that partial substitution of Bi in BiCuSeO with a small amount of Ba/Pb can significantly improve the conductivity and power factor of the material, while ball milling can reduce the grain size of the material to about 350 mm, thus reducing the thermal conductivity of the material and improving its electrical conductivity. The maximum power factor of Bi0.88Ba0.06Pb0.06CuSeO ceramics prepared by ball milling for 16 h is 0.76 mW/(m∙K2) at 873 K, and the maximum ZT value is 1.18, which is 2.71 times and 2.19 times higher than that of undoped BiCuSeO ceramics, respectively.
苏逸斯, 冯波, 胡晓明, 刘培海, 李光强, 樊希安. Ba-Pb双掺杂与晶粒细化的协同调整对BiCuSeO半导体陶瓷热电性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(3): 239-247.
SU Yisi, FENG Bo, HU Xiaoming, LIU Peihai, LI Guangqiang, FAN Xi’an. Effect of synergistic adjustment of Ba-Pb doping and grain refinement on thermoelectric property of BiCuSeO semiconductor ceramics. Materials Science and Engineering of Powder Metallurgy, 2019, 24(3): 239-247.
[1] KANG M G, CHO K H, OH S M, et al.High-temperature thermoelectric properties of nanostructured Ca3Co4O9 thin films[J]. Appl Phys Lett, 2011, 98(14): 142102-142103. [2] LEE M, VICIU L, LI L, et al.Large enhancement of the thermo power in NaxCoO2 at high Na doping[J]. Nat Mater, 2006, 5(7): 537-540. [3] LIU J, WANG C L, PENG H, et al.Thermoelectric properties of Dy-doped SrTiO3 ceramics[J]. J Electron Mater, 2012, 41(11): 3073-3076. [4] ZHAO L D, HE J, BERARDAN D, et al.BiCuSeO oxyselenides: new promising thermoelectric materials[J]. Energ Environ Sci, 2014, 7(9): 2900-2924. [5] SUN L D, AN T H, JEONG M, et al.Density of state effective mass and related charge transport properties in K-doped BiCuOSe[J]. Appl Phys Lett, 2013, 103(23): 232110. [6] LI J, SUI J, PEI Y, et al.The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material[J]. J Mater Chem A, 2014, 2(14): 4903-4906. [7] LIU Y, ZHENG Y, ZHAN B, et al.Influence of Ag doping on thermoelectric properties of BiCuSeO[J]. J Eur Ceram Soc, 2015, 35(2): 845-849. [8] LI J, SUI J, BARRETEAU C, et al.Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides[J]. J Alloys Comp, 2013, 551: 649-653. [9] PEI Y L, HE J, LI J F, et al.High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO[J]. NPG Asia Mater, 2013, 5(5): e47. [10] ZHAO L D, BERARDAN D, PEI Y L, et al.Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials[J]. Appl Phys Lett, 2010, 97(9): 092118. [11] LI J, SUI J, PEI Y, et al.A high thermoelectric figure of merit ZT>1 in Ba heavily doped BiCuSeO oxyselenides[J]. Energ Environ Sci, 2012, 5(9): 8543-8547. [12] PAN L, BERARDAN D, ZHAO L, et al.Influence of Pb doping on the electrical transport properties of BiCuSeO[J]. Appl Phys Lett, 2013, 102(2): 023902. [13] FAROOQ M U, BUTT S, GAO K, et al.Cd-doping a facile approach for better thermoelectric transport properties of BiCuSeO oxyselenides[J]. RSC Adv, 2016, 6(40): 33789-33797. [14] REN G, BUTT S, ZENG C, et al.Electrical and thermal transport behavior in Zn-doped BiCuSeO oxyselenides[J]. J Electron Mater, 2015, 44(6): 1627-1631. [15] FENG B, LI G, HOU Y, et al.Enhanced thermoelectric properties of Sb-doped BiCuSeO due to decreased band gap[J]. J Alloys Comp, 2017, 712: 386-393. [16] LIU Y, DING J, XU B, et al.Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure[J]. Appl Phys Lett, 2015, 106(23): 233903. [17] DAS S, CHETTY R, WOJCIECHOWSKI K, et al.Thermoelectric properties of Sn doped BiCuSeO. Appl[J]. Surf Sci, 2017, 418: 238-245. [18] FAROOQ M U, BUTT S, GAO K, et al.Improved thermoelectric performance of BiCuSeO by Ag substitution at Cu site[J]. J Alloys Comp, 2017, 691: 572-577. [19] LIU Y, ZHAO L, ZHU Y, et al.Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach[J]. Adv Energ Mater, 2016, 6(9): 1502423. [20] REN G K, WANG S Y, ZHU Y C, et al.Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier-phonon coupling[J]. Energ Environ Sci, 2017, 10: 1-268. [21] LIU Y, ZHAO L D, LIU Y, et al.Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies[J]. J Amer Chem Soc, 2011, 133(50): 20112-20115. [22] SUI J, LI J, HE J, et al.Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides[J]. Energ Environ Sci, 2013, 6(10): 2916-2920. [23] PEI Y L, WU H, WU D, et al.High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping[J]. J Amer Chem Soc, 2014, 136(39): 13902-13908. [24] LIU Y, ZHOU Y, LAN J, et al.Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of copper selenides[J]. J Alloys Comp, 2016, 662: 320-324. [25] KO D K, KANG Y, MURRAY C B.Enhanced thermopower via carrier energy filtering in solution-processable Pt-Sb2Te3 nanocomposites[J]. Nano Lett, 2011, 11(7): 2841-2844. [26] GORSSE S, VIVES S, BELLANGER P, et al.Multi-scale architectured thermoelectric materials in the Mg2(Si,Sn) system[J]. Mater Lett, 2016, 166: 140-144. [27] FAN X A, CAI X Z, RONG Z Z, et al.Resistance pressing sintering: A simple, economical and practical technique and its application to p-type (Bi,Sb)2Te3, thermoelectric materials[J]. J Alloys Comp, 2014, 607: 91-98. [28] HUMPHRY-BAKER S A, SCHUH C A. Anomalous grain refinement trends during mechanical milling of Bi2Te3[J]. Acta Mater, 2014, 75(16): 167-179. [29] OLESZAK D, SHINGU P H.Nanocrystalline metals prepared by low energy ball milling[J]. J Appl Phys, 1996, 79(6): 2975-2980. [30] HAN J, SUN Q, SONG Y.Enhanced thermoelectric properties of La and Dy co-doped, Sr-deficient SrTiO3, ceramics[J]. J Alloys Comp, 2017, 705: 22-27. [31] SOFFIENTINI A, TREDICI I G, BOLDRINI S, et al.Synthesis and characterization of bulk nanostructured thermoelectric Ca3Co4O9[J]. J Nanosci Nanotechno, 2017, 17(3): 1674-1680. [32] QUEBE P, TERBUCHTE L J, JEITSCHKO W.Quaternary rare earth transition metal arsenide oxides RTAsO (T=Fe, Ru, Co) with ZrCuSiAs type structure[J]. J Alloys Comp, 2000, 302: 70-74. [33] HAN X W, FANX A, ZHANG C C, et al.Pushing the optimal ZT, values of p-type Bi2-xSbxTe3, alloys to a higher temperature by expanding band gaps and suppressing intrinsic excitation[J]. J Mater Sci Mater El, 2016, 27(9): 1-7. [34] ZHANG C C, FAN X A, HU J, et al.Changing the band gaps by controlling the distribution of initial particle size to improve the power factor of N-Type Bi2Te3 based polycrystalline bulks[J]. Adv Engi Mater, 2017:1600696. [35] WANG S, HUI S, PENG K, et al.Grain boundary scattering effects on mobilities in p-type polycrystalline SnSe[J]. J Mater Chem C, 2017, 5(39): 10191-10200. [36] HSIAO C L, QI X.The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides[J]. Acta Mater, 2016, 102: 88-96. [37] SHIRI D, KONG Y, BUIN A, et al.Strain induced change of bandgap and effective mass in silicon nanowires[J]. Appl Phys Lett, 2008, 93(7): 433-442. [38] KIM H S, GIBBS Z M, TANG Y, et al.Characterization of Lorenz number with Seebeck coefficient measurement[J]. Apl Mater, 2015, 3(4): 105-110. [39] REN Y, YANG J, JIANG Q, et al.Synergistic effect by Na doping and S substitution for high thermoelectric performance of p-type MnTe[J]. J Mater Chem C, 2017, 5(21): 5076-5082.