Abstract:K doped O3-type Na0.9-xKxCu0.22Fe0.30Mn0.48O2 (x=0, 0.05, 0.1) cathode materials were prepared by simple solid phase method. The structural stabilities and electrochemical properties of the materials were analyzed and studied by X-ray diffractometer, scanning electron microscope, transmission electron microscope, and electrochemical experiment. The results show that K doping can enhance the structural stability, the Na+ diffusion rate and electrochemical reversibility are also significantly improved. The O3→P3 phase transition occurs earlier and faster, which has a positive effect on improving the energy efficiency of O3-type cathode materials. The O3-type Na0.85K0.05Cu0.22Fe0.30Mn0.48O2 cathode material possesses excellent cycle stability, which can deliver a capacity retention of 88.6% after 150 cycles at 0.5 C. K doping is low-cost and simple to operate, which can help to promote the industrialization of stable high-performance sodium ion batteries.
[1] CANO Z P, BANHAM D, YE S, et al.Batteries and fuel cells for emerging electric vehicle markets[J]. Nature Energy, 2018, 3(4): 279-289. [2] 梁叔全, 程一兵, 方国赵, 等. 能源光电转换与大规模储能二次电池关键材料的研究进展[J]. 中国有色金属学报, 2019, 29(9): 2064-2113. LIANG Shuquan, CHENG Yibing, FANG Guozhao, et al.Research progress of key materials for energy photoelectric conversion and large-scale energy storage secondary batteries[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2064-2113. [3] 曹鑫鑫, 周江, 潘安强, 等. 钠离子电池磷酸盐正极材料研究进展[J]. 物理化学学报, 2020, 36(5): 24-49. CAO Xinxin, ZHOU Jiang, PAN Anqiang, et al.Recent advances in phosphate cathode materials for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): 24-49. [4] WANG P, YAO H, LIU X, et al.Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries[J]. Advanced Materials, 2017, 29(19): 1700210. [5] MORTEMARD B, CARLIER D, GUIGNARD M, et al.Influence of Mn/Fe ratio on electrochemical and structural properties of P2-NaxMn1-yFeyO2 phases as positive electrode material for Na-ion batteries[J]. Chemistry of Materials, 2018, 30(21): 7672-7681. [6] DENG J, LUO W, CHOU S, et al.Sodium-ion batteries: from academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): 1701428. [7] WANG P, YOU Y, YIN Y, et al.Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): 1701912. [8] ZUO W, XIAO Z, ZARRABEITIA M, et al.Guidelines for air-stable lithium/sodium layered oxide cathodes[J]. ACS Materials Letters, 2022, 4(6): 1074-1086. [9] 陈林, 黄群, 陈铖, 等. 铜元素掺杂改性蜂窝层状Na3Ni2SbO6正极材料的电化学性能[J]. 粉末冶金材料科学与工程, 2023, 28(1): 9-19. CHEN Lin, HUANG Qun, CHEN Cheng, et al.Electrochemical properties of copper doped honeycomb- layered Na3Ni2SbO6 cathode materials[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(1): 9-19. [10] FU H, FAN G, ZHOU J, et al.Facilitating phase evolution for a high-energy-efficiency, low-cost O3-type NaxCu0.18- Fe0.3Mn0.52O2 sodium ion battery cathode[J]. Inorganic Chemistry, 2020, 59(18): 13792-13800. [11] 张禹, 李劼, 张红亮, 等. 锂离子掺杂P3型NaMnO2钠离子电池正极材料中Na+扩散的第一性原理计算研究[J]. 中南大学学报, 2022, 29(9): 2930-2939. ZHANG Yu, LI Jie, ZHANG Hongliang, et al.First-principles computational studies on Na+ diffusion in Li-doped P3-type NaMnO2 as cathode material for Na-ion batteries[J]. Journal of Central South University, 2022, 29(9): 2930-2939. [12] 黄麟竣, 曹鑫鑫, 郑智鹤, 等. MOF衍生CoP/C的制备、表征及电化学析氢性能[J]. 粉末冶金材料科学与工程, 2019, 24(5): 467-473. HUANG Linjun, CAO Xinxin, ZHENG Zhihe, et al.Preparation, characterization and electrochemical hydrogen evolution of MOF-derived CoP/C[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(5): 467-473. [13] FU F, LIU X, FU X, et al.Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries[J]. Nature Communications, 2022, 13(1): 2826. [14] FU H, WANG Y P, FAN G, et al.Synergetic stability enhancement with magnesium and calcium ion substitution for Ni/Mn-based P2-type sodium-ion battery cathodes[J]. Chemical Science, 2022, 13(3): 726-736. [15] WANG K, WAN H, YAN P, et al.Dopant segregation boosting high-voltage cyclability of layered cathode for sodium ion batteries[J]. Advanced Materials, 2019, 31(46): 1904816. [16] XIONG F, LI J, ZUO C, et al.Mg-doped Na4Fe3(PO4)2(P2O7)/C composite with enhanced intercalation pseudocapacitance for ultra-stable and high-rate sodium-ion storage[J]. Advanced Functional Materials, 2022, 33(6): 2211257. [17] YU T Y, KIM J, HWANG J Y, et al.High-energy O3-Na1-2xCax[Ni0.5Mn0.5]O2 cathodes for long-life sodium- ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(27): 13776-13786. [18] WANG K, WU Z, ZHANG T, et al.P2-type Na0.67Mn0.72Ni0.14Co0.14O2 with K+ doping as new high rate performance cathode material for sodium-ion batteries[J]. Electrochimica Acta, 2016, 216: 51-57. [19] MU L, XU S, LI Y, et al.Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Advanced Materials, 2015, 27(43): 6928-6933. [20] SHEN Q, ZHAO X, LIU Y, et al.Dual-strategy of cation-doping and nanoengineering enables fast and stable sodium-ion storage in a novel Fe/Mn-based layered oxide cathode[J]. Advanced Science, 2020, 7(21): 2002199.