Dimensional stability and mechanical properties of HK30 stainless steel by metal injection molding
TANG Zhihao1,2, PAN Chaomei2, HE Pengjiang2, LUO Hao2, SONG Xinqiang2, ZENG Keli1,2
1. College of Materials Science and Engineering, Central South University, Changsha 410000, China; 2. Guangdong Institute of Materials and Processing, Guangdong Academy of Sciences, Guangzhou 510000, China
Abstract:The automotive turbine wheels of HK30 stainless steel were prepared by the metal injection molding (MIM). The effects of MIM process parameters on the dimensional stability and mechanical properties of the turbine wheels were investigated. The results show that when the multi-component plastic-based binder formulation is 90%POM +4%PP+2.5%PW+1%SA+2%EVA+0.5%EBS, the molding has the best shape retention. The optimum powder loading (volume fraction) of feedstock is 60%. The melt flow index (MPF) of feedstock is 1 220.7 g/10 min and the sintering shrinkage uniformity of the samples is the optimal. The best injection conditions are the injection temperature of 190 ℃ and the injection pressure of 237.6 MPa. The shape of the injection blank is intact and the quality consistency is the best. The optimum sintering temperature is 1 310 ℃. The turbine blades has the best dimensional stability at 1 310 ℃, and the relative density of the sample is 99.72%, and the tensile strength, yield strength and hardness (HV) are 600 MPa , 289 MPa and 170, respectively.
汤志豪, 潘超梅, 何鹏江, 罗浩, 宋信强, 曾克里. 金属注射成形HK30不锈钢的尺寸稳定性与力学性能[J]. 粉末冶金材料科学与工程, 2021, 26(4): 313-319.
TANG Zhihao, PAN Chaomei, HE Pengjiang, LUO Hao, SONG Xinqiang, ZENG Keli. Dimensional stability and mechanical properties of HK30 stainless steel by metal injection molding. Materials Science and Engineering of Powder Metallurgy, 2021, 26(4): 313-319.
[1] KANG D S, WOO K D, DONG G K, et al.Heat resistant turbine wheel development of automobile[C]// 2012 International Conference on Materials and Manufacturing Research, ICMMR, 2012. [2] 安宁, 张志伟, 田建军, 等. 国内汽车涡轮增压器发展形势和对材料应用需求[J]. 金属材料研究, 2015, 41(1): 21-26. AN Ning, ZHANG Zhiwei, TIAN Jianjun, et al.Development situation of domestic automotive turbochargers and demand for material applications[J]. Research on Metallic Materials, 2015, 41(1): 21-26. [3] 刘刚, 诸葛伟林, 黄开胜, 等. 车用发动机涡轮联合循环技术研究进展[J]. 车用发动机, 2014, 5(214): 1-7. LIU Gang, ZHUGE Weilin, HUANG Kaisheng, et al.Research progress of combined cycle technology for automotive engines[J]. Vehicle Engine, 2014, 5(214): 1-7. [4] 孙大宇, 庄东帆. 汽车涡轮增压器制造装备国内外现状分析[J]. 制造技术与机床, 2013(2): 45-49. SUN Dayu, ZHUANG Dongfan.Analysis of the current situation of automobile turbocharger manufacturing equipment at home and abroad[J]. Manufacturing Technology & Machine Tool, 2013(2): 45-49. [5] TRESA, M, POLLOCK, et al. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties[J]. Journal of Propulsion and Power, 2006, 22(2): 361-361. [6] 池田, 修治, 佐藤, 等. Development of metal injection molding process for aircraft engine part production[J]. Journal of IHI technologies, 2013, 53: 50-54. [7] GELIN J C, BARRIERE T, SONG J.Processing defects and resulting mechanical properties after metal injection molding[J]. Journal of Engineering Materials & Technology, 2008, 9(1): 675-700. [8] LEVASSEUR D, BROCHU M.Effect of heating rate on the pressureless sintering densification of a nickel-based superalloy[J]. Metallurgical and Materials Transactions A, 2016, 47(5): 2257-2266. [9] HASHIKAWA R, OSADA T, KUDO K, et al.Control the distortion of the large and complex shaped parts by the metal injection molding process[J]. Journal of the Japan Society of Powder & Powder Metallurgy, 2016, 63(7): 473-478. [10] 喻建, 李益民, 李东阳, 等. 粉末装载量对金属注射成形17-4PH不锈钢力学性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(1): 32-37. YU Jian, LI Yimin, LI Dongyang, et al.Effect of powder loading on the mechanical properties of metal injection molded 17-4PH stainless steel[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(1): 32-37. [11] 李益民, KHALIL K A, 黄伯云. 金属注射成形17-4PH不锈钢的研究[J]. 粉末冶金技术, 2005, 23(4): 254-258. LI YiMin, KHALIL K A, HUANG Boyun.Study of metal injection molding of 17-4PH stainless steel[J]. Powder Metallurgy Technology, 2005, 23(4): 254-258. [12] MURRAY K, COLEMAN A J, KEARNS M A, et al.A Microstructural Evaluation of Metal Injection Moulded HK-30[M]// TORRALBA J M. European Powder Metallugy Association: Brussels, 2014. [13] PARK B G, LEE H J, DO K H, et al.Metal injection molding analysis of vane made by HK30 metal powder in turbocharger[M]// BARRIèRE T. European Powder Metallugy Association: Brussels, 2013. [14] 杨福宝, 李丹, 刘欣, 等. 镍基高温合金增压涡轮的粉末注射成形试验研究与缺陷分析[J]. 稀有金属, 2016, 40(11): 1112-1118. YANG Fubao, LI Dan, LIU Xin, et al.Experimental study and defect analysis of powder injection molding of nickel-based high-temperature alloy supercharged turbines[J]. Rare Metals, 2016, 40(11): 1112-1118. [15] ZHANG L, CHEN X, LI D, et al.Net-shape forming and mechanical properties of MIM418 turbine wheel[J]. Journal of Materials Engineering and Performance, 2016, 25(9): 3656-3661. [16] ZHANG L, LI D, CHEN X, et al.Preparation of MIM 213 turbine wheel with hollow internal structure[J]. Materials & Design, 2015, 86: 474-481.