Abstract:BiCuSeO functional ceramics were doped by Bi/Cu/Se, and Bi1-xBax/2Pbx/2Cu1-xNixSe1-xTexO (x=0, 0.02, 0.04, 0.06, 0.08, 0.10) ceramics were prepared by mechanical alloying (MA) and spark pressing sintering (SPS) process. The phase, microstructure, electrical transport parameters and thermal transport parameters were analyzed before and after doping to study the influence on the thermoelectric properties of BiCuSeO functional ceramics. The results indicate that three position doping can hybridize the beneficial effects of several elements, which can significantly improve the conductivity and power factor of BiCuSeO functional ceramics while maintaining a high Seebeck coefficient. The best doping amount x is 0.10. The highest power factor of 0.71 mW/(m∙K2) and the maximum thermal power value of 1.06 are obtained at 873 K, which are about 2.5 times and 2 times of undoped ceramics.
冯波. 三位置掺杂对BiCuSeO功能陶瓷热电性能的影响[J]. 粉末冶金材料科学与工程, 2021, 26(4): 306-312.
FENG Bo. Effect of three-position doping on thermoelectric properties of BiCuSeO based functional ceramics. Materials Science and Engineering of Powder Metallurgy, 2021, 26(4): 306-312.
[1] BORUP K A, DE BOOR J, WANG H, et al.Measuring thermoelectric transport properties of materials[J]. Energy & Environmental Science, 2015, 8(2): 423-435. [2] MARTIN J.Apparatus for the high temperature measurement of the Seebeck coefficient in thermoelectric materials[J]. Review of Scientific Instruments, 2012, 83(6): 065101. [3] RAMANATHAN S, CHRYSLER G M.Solid-state refrigeration for cooling microprocessors[J]. IEEE Transactions on Components and Packaging Technologies, 2006, 29(1): 179-183. [4] LEONI R.On-chip micro-refrigerators for sub-Kelvin cooling[J]. New Astronomy Reviews, 1999, 43(2): 317-327. [5] DISALVO F J.Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428): 703-706. [6] ROWE D M, MIN G.Evaluation of thermoelectric modules for power generation[J]. Journal of Power Sources, 1998, 73(2): 193-198. [7] ZHAO L D, HE J, BERARDAN D, et al.BiCuSeO oxyselenides: new promising thermoelectric materials[J]. Energy & Environmental Science, 2014, 7(9): 2900-2924. [8] KIM G H, SHAO L, ZHANG K, et al.Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials, 2013, 12(8): 719-723. [9] ZHANG G, LI B.Impacts of doping on thermal and thermoelectric properties of nanomaterials[J]. Nanoscale, 2010, 2(7): 1058-1068. [10] LI J, SUI J H, PEI Y L, et al.A high thermoelectric figure of merit ZT> 1 in Ba heavily doped BiCuSeO oxyselenides[J]. Energy & Environmental Science, 2012, 5(9): 8543-8547. [11] FENG B, LI G, HOU Y, et al.Enhanced thermoelectric properties of Sb-doped BiCuSeO due to decreased band gap[J]. Journal of Alloys and Compounds, 2017, 712: 386-393. [12] LAN J L, LIU Y C, ZHAN B, et al.Enhanced thermoelectric properties of Pb‐doped BiCuSeO ceramics[J]. Advanced Materials, 2013, 96(9): 2710-2713. [13] FENG B, LI G Q, HU X M, et al.Improvement of thermoelectric performance in BiCuSeO oxide by ho doping and band modulation[J]. Chinese Physics Letters, 2020, 37(3): 037201. [14] FENG B, LI G Q, HU X M, et al.Enhancement of thermoelectric performances of BiCuSeO through Y doping and grain refining[J]. Journal of Materials Science (Materials in Electronics), 2020, 31(6): 4915-4923. [15] FENG B, LI G Q, HOU Y H, et al.Enhancement of the thermoelectric properties of BiCuSeO via in doping and powder size controlling[J]. Journal of Electronic Materials, 2020, 49(1): 611-620. [16] PEI Y L, HE J, LI J F, et al.High thermoelectric performance of oxyselenides: Intrinsically low thermal conductivity of Ca-doped BiCuSeO[J]. NPG Asia Materials, 2013, 5(5): 47-47. [17] LI F, WEI T R, KANG F, et al.Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range[J]. Journal of Materials Chemistry A, 2013, 1(38): 11942-11949. [18] YIN C, TANG J, CHEN Z Y, et al.Effect of multisite alloying and chloride doping for realizing a high thermoelectric performance in misfit-layered chalcogenide[J]. Journal of Alloys and Compounds, 2020, 840: 155756. [19] GNU N, WOONGJIN C, JUNSU L, et al.Effect of multi substitution on the thermoelectric performance of the Ca11-xYbxSb10-y Gez(0≤x≤9; 0≤y≤3; 0≤z≤3) system: Experimental and theoretical studies[J]. Inorganic Chemistry, 2017, 56(12): 7099-7110. [20] WEN Q, CHANG C, PAN L, et al.Enhanced thermoelectric performance of BiCuSeO by increasing seebeck coefficient through magnetic ion incorporation[J]. Journal of Materials Chemistry A, 2017, 5(26): 13392-13399. [21] LIU Y, LAN J L, XU W, et al.Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning[J]. Chemical Communications, 2013, 49(73): 8075-8077. [22] LI W, PESSA M, LIKONEN J.Lattice parameter in GaNAs epilayers on GaAs: Deviation from Vegard’s law[J]. Applied Physics Letters, 2001, 78(19): 2864-2866. [23] RYABININA O N, RAICHENKO A I, VERKHOTUROV A D, et al.Operating performance of steel punch electrodes for electric discharge sintering[J]. Soviet Powder Metallurgy and Metal Ceramics, 1976, 15(9): 703-705. [24] CROWELL C R, SZE S M.Current transport in metal-semiconductor barriers[J]. Solid-state Electronics, 1966, 9(11/12): 1035-1048. [25] MCCULLOCH I, HEENEY M, BAILEY C, et al.Liquid- crystalline semiconducting polymers with high charge-carrier mobility[J]. Nature Materials, 2006, 5(4): 328-333. [26] UCHIDA K, TAKAHASHI S, HARII K, et al.Observation of the spin seebeck effect[J]. Nature, 2008, 455(7214): 778-781. [27] BALANDIN A, WANG K L.Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well[J]. Physical Review B, 1998, 58(3): 1544. [28] LIU W, SHI X, HONG M, et al.Ag doping induced abnormal lattice thermal conductivity in Cu2Se[J]. Journal of Materials Chemistry A, 2018, 6(48): 13225-13231. [29] TOYOZAWA Y.Self-trapping of an electron by the acoustical mode of lattice vibration. I[J]. Progress of Theoretical Physics, 1961, 26(1): 29-44. [30] JONSON M, MAHAN G D.Mott's formula for the thermo power and the Wiedemann-Franz law[J]. Physical Review B, 1980, 21(10): 4223. [31] LIU Y C, LIU J F, ZHANG B P, et al. Thermoelectric properties of Ni doped P-type BiCuSeO oxyselenides[J]. Key Engineering Materials, 2014, 602/603(3): 906-909. [32] BO F, GLAB C, ZHAO P, et al.Enhanced thermoelectric properties in BiCuSeO ceramics by Pb/Ni dual doping and 3D modulation doping[J]. Journal of Solid State Chemistry, 2019, 271: 1-7. [33] GAO L, CHEN R S, HAN E H.Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys[J]. Journal of Alloys and Compounds, 2009, 481(1/2): 379-384.