Abstract:In this paper, different Ni elements were added in the Cu-Ni-Ag alloy, and gas atomized alloy powders were used to manufacture bulk sample by hot pressing, rolling and annealing. The results indicated that the Cu-Ni-Ag alloy with high strength and good plasticity has been successfully fabricated by composition and microstructure optimization. The main strengthening mechanisms of Cu-Ni-Ag alloy are solution strengthening and dislocation strengthening. The solution strengthening effect of Ni is significant, but the solution solubility of Ag in the alloy is reduced by Ni. The number of Ag-rich precipitates increases with the increase of Ni content. The precipitated phase can further enhance the strength by pinning grain boundaries and impeding dislocation movement.
王靖瑛, 吕信群, 陈仕奇, 高阳, 刘咏. Ni含量对Cu-Ni-Ag合金固溶强化行为的影响[J]. 粉末冶金材料科学与工程, 2021, 26(3): 263-271.
WANG Jingying, LÜ Xinqun, CHEN Shiqi, GAO Yang, LIU Yong. Effect of Ni content on the solid solution strengthening behavior of Cu-Ni-Ag alloys. Materials Science and Engineering of Powder Metallurgy, 2021, 26(3): 263-271.
[1] LIU J B, ZHANG L H, LIU J J, et al.Enhancing the Ag precipitation by surface mechanical attrition treatment on Cu-Ag alloys[J]. Metals and Materials International, 2016, 22(5): 831-835. [2] XIA C D, ZHANG W, KANG Z Y, et al.High strength and high electrical conductivity Cu-Cr system alloys manufactured by hot rolling-quenching process and thermomechanical treatments[J]. Materials Science & Engineering A, 2012, 538: 295-301. [3] ZHANG X, SHU S P, BELLON P, et al.Precipitate stability in Cu-Ag-W system under high-temperature irradiation[J]. Acta Materialia, 2015, 97(3): 48-56. [4] BENGHALEM A, MORRIS D G.Microstructure and strength of wire-drawn Cu-Ag filamentary composites[J]. Acta Materialia, 1997, 45(1): 397-406. [5] 支海军, 徐玉松, 陆敏松, 等. 高速电气化铁道用CuSn合金接触线成形工艺研究[J]. 铸造技术, 2009, 30(12): 1591-1594. ZHI Haijun, XU Yusong, LU Minsong, et al.Forming technology of Cu-Sn alloy contact wire for high-speed electric railway[J]. Foundry Technology, 2009, 30(12): 1591-1594. [6] YI J, JIA Y L, ZHAO Y Y, et al.Precipitation behavior of Cu-3.0Ni-0.72Si alloy[J]. Acta Materialia, 2019, 166(2): 61-70. [7] ZHANG L, LI Z, LEI Q, et al.Hot deformation behavior of Cu-8.0Ni-1.8Si-0.15Mg alloy[J]. Materials Science and Engineering A, 2011, 528(3): 1641-1647. [8] WITUSIEWICZ V T, ARPSHOFEN I, SEIFERT H J, et al.Enthalpy of mixing of liquid and undercooled liquid ternary and quaternary Cu-Ni-Si-Zr alloys[J]. Journal of Alloys & Compounds, 2002, 337(1): 155-167. [9] MONZEN R, WATANABE C. Microstructure and mechanical properties of Cu-Ni-Si alloys[J]. Materials Science and Engineering A, 2008, s483/484(1): 117-119. [10] YUAN Y, LI Z, XIAO Z, et al.Microstructure evolution and properties of Cu-Cr alloy during continuous extrusion process[J]. Journal of Alloys and Compounds, 2017, 703: 454-460. [11] PENG L M, MAO X M, XU K D, et al.Property and thermal stability of in situ composite Cu-Cr alloy contact cable[J]. Journal of Materials Processing Technology, 2005, 166(2): 193-198. [12] MURASE S, KOIKE Y, SHIRAKI H.Studies on superconducting Nb3Sn formed from high-tin-concentration Cu-Sn alloy[J]. Journal of Applied Physics, 1978, 49(12): 6020-6026. [13] BAKAVOS D, PRANGNELL P B, BES B, et al.The effect of silver on microstructural evolution in two 2xxx series Al-alloys with a high Cu:Mg ratio during aging to a T8 temper[J]. Materials Science and Engineering A, 2008, 491(1): 214-223. [14] TIAN Y Z, LI J J, ZHANG P, et al.Microstructures, strengthening mechanisms and fracture behavior of Cu-Ag alloys processed by high-pressure torsion[J]. Acta Materialia, 2012, 60(1): 269-281. [15] 刘平, 刘喜波, 贾淑果, 等. 微量铈和铬对Cu-0.1Ag合金接触线的性能影响[J]. 稀有金属, 2006(1): 39-42. LIU Ping, LIU Xibo, JIA Shuguo, et al.Effects of adding traces of Ce and Cr on properties of Cu-0.1Ag alloy for contact wires[J]. Rare Metal, 2006(1): 39-42. [16] RAJU K S, SARMA V S, KAUFFMANN A, et al.High strength and ductile ultrafine-grained Cu-Ag alloy through bimodal grain size, dislocation density and solute distribution[J]. Acta Materialia, 2013, 61(1): 228-238. [17] XIE M W, HUANG W, CHEN H M, et al.Microstructural evolution and strengthening mechanisms in cold-rolled Cu-Ag alloys[J]. Journal of Alloys and Compounds, 2020, 851(15): 156893. [18] SAITO Y, UTSUNOMIYA H, TSUJI N, et al.Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process[J]. Acta Materialia, 1999, 47(2): 579-583. [19] ZHAO W S, TAO N R, GUO J Y, et al.High density nano-scale twins in Cu induced by dynamic plastic deformation[J]. Scripta Materialia, 2005, 53(6): 745-749. [20] NIU Y, ZHAO Z L, GESMUNDO F, et al.The air oxidation of two Cu-Ni-Ag alloys at 600-700 ℃[J]. Corrosion Science, 2001, 43(8): 1541-1556. [21] 赵泽良, 牛焱. Cu-15Ni-15Ag合金在600~700 ℃空气中的氧化[J]. 腐蚀科学与防护技术, 2001, 13(4): 187-191. ZHAO Zeliang, NIU Yan.The air oxidation of Cu-15Ni-15Ag alloy at 600-700 ℃[J]. Corrosion Seience and Protection Technology, 2001, 13(4): 187-191. [22] GAGANOV A, FREUDENBERGER J, BOTCHAROVA E, et al.Effect of Zr additions on the microstructure, and the mechanical and electrical properties of Cu-7wt.%Ag alloys[J]. Materials Science and Engineering A, 2006, 437(2): 313-322. [23] PORTER D A, EASTERLING K E.Phase Transformations in Metals and Alloys, 2nd edition[M]. Chapman & Hall, 1992. [24] WIRTH R, GLEITER H.Is discontinuous (cellular) precipitation an effect of a structural transformation in the migrating phase boundary[J]. Acta Metallurgica, 1981, 29(11): 1825-1830. [25] SONG J T, LI H Y, LI J, et al.Fabrication and optical properties of metastable Cu-Ag alloys[J]. Applied Optics, 2002, 41(25): 5413-5416. [26] LIU X J, GAO F, WANG C P, et al.Thermodynamic assessments of the Ag-Ni binary and Ag-Cu-Ni ternary systems[J]. Journal of Electronic Materials, 2008, 37(2): 210-217. [27] MA K K, WEN H M, HU T, et al.Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation- strengthened aluminum alloy[J]. Acta Materialia, 2014, 62: 141-155. [28] WILLIAMSON G K, HALL W H.X-ray line broadening from filed aluminium and wolfram[J]. Acta Metallurgica, 1953, 1(1): 22-31. [29] WILLIAMSON G K, SMALLMAN R E.III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum[J]. Philosophical Magazine, 1956, 1(1): 34-46. [30] HE J Y, WANG H, HUANG H L, et al.A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102: 187-196. [31] ZHAO Y H, LIAO X Z, JIN Z, et al.Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing[J]. Acta Materialia, 2004, 52(15): 4589-4599. [32] FRANCOIS, PINEAU D, ZAOUI A.Mechanical Behavior of Materials[M]. McGraw-Hill, 1990. [33] VERHOEVEN J D, CHUMBLEY L S, LAABS F C, et al.Measurement of filament spacing in deformation processed Cu Nb alloys[J]. Acta Metallurgica et Materialia, 1991, 39(11): 2825-2834. [34] WEN H M, TOPPING T D, ISHEIM D, et al.Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering[J]. Acta Materialia, 2013, 61(8): 2769-2782. [35] ZUO X W, HAN K, ZHAO C G, et al.Microstructure and properties of nanostructured Cu28wt%Ag microcomposite deformed after solidifying under a high magnetic field[J]. Materials Science and Engineering A, 2014, 619(1): 319-327.