1. Key Laboratory of Research on Hydraulic and Hydro-Power Equipment Surface Engineering Technology of Zhejiang Province, Standard & Quality Control Research Institute Ministry of Water Resources. P. R. C, Hangzhou 310012, China; 2. Water Machinery and Remanufacturing Technology Engineering Laboratory of Zhejiang Province, Hangzhou Machine Design & Research Institute Ministry of Water Resources. P. R. C, Hangzhou 310012, China; 3. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Abstract:Fe-Mo-V-C alloy coatings were prepared on the 45# steel by laser cladding technique with coaxial powder-feeding. The phase compositions, microstructure and element distribution were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (DES). In addition, the microhardness and friction and wear property of coatings were tested by Vickers hardness tester and dry sliding friction and wear tester, and the wear mechanism was analyzed. The results show that Fe-Mo-V-C alloy coating prepared by laser cladding is mainly composed of α-Fe and Fe-based alloy, including (α-Fe,Ni), Fe4V and Fe0.7Mo0.3, intermetallic compounds including VC, V8C7, VB and Fe3C, and eutectic phase composed of Fe-based metal and Fe3C. The microtructure of coating is compact and uniform, and the fine and hard particles in the matrix are dispersive, homogeneous and extensive. The average hardness of coating at 1 600 W is as high as 1 020 HV0.2, and its wear resistance is 14 times of the substrate. The dispersion strengthening of VC particles leads to high hardness, and it works as pinning effect and wear-resistant skeleton during the wear process, which greatly improves the wear resistance of Fe-based coating.
[1] FU Z K, DING H H, WANG W J, et al. Investigation on microstructure and wear characteristic of laser cladding Fe-based alloy on wheel/rail materials[J]. Wear, 2015, 330-331: 592-599. [2] 张凯, 陈小明, 张磊, 等. 激光熔覆制备耐磨耐蚀涂层技术研究进展[J]. 粉末冶金材料科学与工程, 2019, 24(4): 308-314. ZHANG Kai, CHEN Xiaoming, ZHANG Lei, et al.Research progress of wear-resistant and corrosion-resistant coatings prepared by laser cladding[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4): 308-314. [3] 熊玲玲, 郑海忠, 陈郑, 等. 激光熔覆制备纳米陶瓷/金属复合涂层熔覆材料的研究现状[J]. 材料导报, 2015, 29(23): 24-29. XIONG Lingling, ZHENG Haizhong, CHEN Zheng, et al.Research status about material used in laser-clad nanostructured ceramics/ metal composite coatings[J]. Mater Rev, 2015, 29(23): 24-29. [4] 陈希章, 胡科, 袁其兵. 激光熔敷原位合成WC增强铁基复合涂层的组织和性能[J]. 中国表面工程, 2016, 29(4): 118-124. CHEN Xichang, HU Ke, QING Qiing.Microstructure and performance of WC reinforced Fe-based composite coating synthesized in-situ produced by laser cladding[J]. China Surface Engineering, 2016, 29(4): 118-124. [5] 刘海渔, 沈言锦. SiC含量对激光熔覆原位合成WC增强铁基合金涂层组织与性能的影响[J]. 机械工程材料, 2016, 40(10): 15-18. LIU Haiyu, SHEN Jinyan.Effect of SiC content on microstructure and properities of in-stu synthesized WC reinforced Iron-based ally coating by laser cladding[J]. Materials for Mechanical Engineering, 2016, 40(10): 15-18. [6] 李爱农, 魏成靓, 刘娇姣, 等. 激光熔覆铁基Cr3C2/MoS2覆层的组织和摩擦磨损性能[J]. 中国表面工程, 2015, 28(5): 77-85. LI Ainong, WEI Chengliang, LIU Jiaojiao, et al.Microstructure, friction and wear properties of laser cladding Fe-based Cr3C2/MoS2 coatings[J]. China Surface Engineering, 2015, 28(5): 77-85. [7] 杜宝帅, 邹增大, 王新洪, 等. 激光熔覆TiC增强铁基耐磨涂层组织结构的研究[J]. 热加工工艺, 2010, 39(24): 182-185. DU Baoshuai, ZHOU Zengda, WANG Xinhong, et al.Study on microstructure of TiC reinforced iron based composite coating prepared by laser cladding[J]. Hot Working Technology, 2010, 39(24): 182-185. [8] 王晓荣, 王新洪, 杜宝帅, 等. 激光熔覆Fe-Ti-V-Cr-C合金涂层的微观组织和性能[J]. 材料工程, 2011(3): 50-54. WANG Xiaorong, WANG Xinhong, DU Baoshuai, et al.Microstructure and property of laser cladding Fe-Ti-V-Cr-C alloy coatings[J]. Journal of Materials Engineering, 2011(3): 50-54. [9] 宗琳, 李荣广, 张小玲. 激光熔覆Fe-Ti-V-C合金微观组织与磨损性能[J]. 机械工程学报, 2017, 53(2): 67-73. ZONG Lin, LI Guangrong, Zhangxiaoling. Microstructure and wear resistance of Fe-Ti-V-C hardfacing alloys by laser cladding[J]. Journal of Mechanical Engineering, 2017, 53(2): 67-73. [10] 张伟, 姚建华, 张利春. 激光熔覆原位生成VC-Fe3C/Fe-Ni复合涂层的组织与性能[J]. 复合材料学报, 2017, 34(1): 142-151. ZHANG Wei, YAO Jianhua, ZHANG Lichun.Microstructure and properties of in-situ synthesized VC-Fe3C/Fe-Ni composite coating made by laser cladding[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 142-151. [11] 王晓荣, 王新洪, 侍国文, 等. 硼对激光熔覆Fe-Ti-V-C合金系组织和性能的影响[J]. 中国激光, 2010, 37(7): 1903-1907. WANG Xiaorong, WANG Xinhong, SHI Guowen, et al.Effect of boron element on the microstructure and property of laser cladding Fe-Ti-V-C alloy system[J]. Chinese Journal of Lasers, 2010, 37(7): 1903-1907. [12] 张伟, 冯秋红, 王尔亦, 等. 激光熔覆原位生成VC增强Fe-Ni基复合涂层的组织与硬度[J]. 金属热处理, 2019, 44(7): 190-193. ZHANG Wei, FENG Qiuhong, WANG Eryi, et al.Microstructure and hardness of in-situ synthesized VC-reinforced Fe-Ni-based composite coating by laser cladding[J]. Heat Treatment of Metals, 2019, 44(7): 190-193. [13] 李桂花, 邹勇, 邹增大, 等. 激光熔覆原位生成Nb2(C,N)及V8C7陶瓷粒子增强铁基金属涂层[J]. 材料工程, 2012(1): 29-33. LI Guihua, ZHOU Yong, ZHOU Zengda, et al.In-situ synthesized Nb2(C,N) and V8C7 ceramics particulates reinforced Fe-based composite coating by laser cladding[J]. Journal of Materials Engineering, 2012(1): 29-33. [14] 万荣春, 孙锋, 张澜庭, 等. Mo对耐火钢高温屈服强度的影响[J]. 北京科技大学学报, 2013, 35(3): 325-331. WAN Rongchun, SUN Feng, ZHANG Lanting, et al.Effect of Mo on the high-temperature yield strength of fire-resistant steels[J]. Journal of University of Science & Technology Beijing, 2013, 35(3): 325-331. [15] LIU T, CHEN L, BI H, et al.Effect of Mo on high-temperature fatigue behavior of 15CrNbTi ferritic stainless steel[J]. Acta Metallurgica Sinica (English Letters), 2014, 27(3): 452-456. [16] 文平, 李春福, 赵毅, 等. Cr, Mo, Ni在α-Fe(C)中占位、键合性质及合金化效应的第一性原理研究[J]. 物理学报, 2014, 63(19): 280-287. WEN Ping, LI Chunfu, ZHAO Yi, et al.First principles calculation of occupancy, bonding characteristics and alloying effect of Cr, Mo, Ni in bulk α-Fe(C)[J]. Acta Physica Sinica, 2014, 63(19): 280-287. [17] 达则晓丽, 朱彦彦, 李铸国. 激光功率对激光熔覆Fe-Co- B-Si-Nb涂层组织和性能的影响[J]. 中国表面工程, 2012, 25(3): 52-56. DAZE Xiaoli, ZHU Yanyan, LI Zhuguo.Effect of laser power on microstructure and properties of laser cladding Fe-Co-B-Si-Nb coatings[J]. China Surface Engineering, 2012, 25(3): 52-56. [18] 张磊, 陈小明, 刘伟, 等. 激光熔覆Ni基合金裂纹的形成机理及敏感性[J]. 激光与光电子学进展, 2019, 56(11): 1-8. ZHANG Lei, CHEN Xiaoming, LIU Wei, et al.Study on the mechanism and sensitivity of cracks in laser cladding Ni-based alloy coatings[J]. Laser & Optoelectronics Progress, 2019, 56(11): 1-8. [19] 沈言锦, 李雪丰, 陈学永. 超声功率对激光熔覆Fe-Cr-V-C系涂层组织与性能的影响[J]. 焊接学报, 2017, 38(5): 74-78. SHEN Jingyan, LI Xuefeng, CHEN Xueyong.Effect of ultrasonic power on microstructure and properties of Fe-Cr-V-C coating by laser cladding[J]. Transactions of the China Welding Institution, 2017, 38(5): 74-78 [20] 张辉, 邹勇, 邹增大, 等. 石墨添加量对Fe-Ti-V-C熔覆层组织及耐磨性的影响[J]. 摩擦学学报, 2014, 34(3): 319-324. ZHANG Hui, ZHOU Yong, ZHOU Zengda, et al.Effect of graphite addition on microstructure and wear resistance of Fe-Ti-V-C cladding layers[J]. Tribology, 2014, 34(3): 319-324.