Friction properties of silver-based alloy slip rings under vacuum current-carrying
ZHANG Shumin, LIU Lanying, YU Yide, WANG Yupeng, LIU Shuai, LIU Qingkai
Beijing Key Laboratory of Long-Life Technology of Precise Rotation and Transmission Mechanisms, Beijing Institute of Control Engineering, Beijing 100094, China
Abstract:To optimize the material selection for the friction pair of silver-based slip rings, this study selected AgCu alloy, AgCuNi alloy, and Ag-based composite as the ring body materials. These materials were paired with Ag-based and Au-based brush wires to form friction pairs for vacuum current-carrying life experiments. Oscilloscope recorder, digital microscope system, and scanning electron microscope were used to study the electrical contact performance, wear surface morphology, debris morphology and composition of different friction pairs. The results show that AgCu alloy and AgCuNi alloy, when grinding against Ag-based and Au-based brush wires, produce elongated filamentous debris with a layered extrusion morphology. Introducing WS2 and MoS2 two-dimensional materials into the Ag alloy ring can change the debris morphology, forming gray-black fine flake-like debris, thus avoiding the generation of filamentous debris at the source of the materials and effectively reducing the risk of slip ring short circuits caused by debris.
[1] HOLM R.Electrical Contacts: Theory and Applications[M].4th ed. New York: Springer, 1967. [2] ZHANG L, XIAO J K, ZHOU K C.Sliding wear behavior of sliver-molybdenum disulfide composite[J].Tribology Transactions, 2012, 55(4): 473-480. [3] ZHANG D R, JIN D.Slip-ring failure mechanism analysis and solution of airborne platform inertial navigation system[J].Journal of Chinese Inertial Technology, 2010, 18(6): 645-647. [4] 卢锦明, 邢立华, 李耀娥, 等. 精密导电滑环的关键技术及发展趋势[J].导航与控制, 2015, 14(1): 20-26. LU Jinming, XING Lihua, LI Yaoe, et al.The key technology and developing trend of the precision conductive slip-ring[J].Navigation and Control, 2015, 14(1): 20-26. [5] 王新平. 空间滑动电接触材料的性能及其寿命增长研究[D].长沙: 中南大学, 2013. WANG Xinping.The properties and lifetime growth research of sliding electrical contact materials for space application[D].Changsha: Central South University, 2013. [6] 陈鸿武, 汪聪, 郑东辉, 等. 电接触材料对滑环寿命和可靠性的影响[J].信息记录材料, 2021, 22(8):18-21. CHEN Hongwu, WANG Cong, ZHENG Donghui, et al.Influence of electrical contact materials on life and reliability of conductive slip ring[J].Information Recording Materials, 2021, 22(8): 18-21. [7] 于芯悦, 马志飞, 张雷, 等. 载荷对AuNi9/PdNi-Au摩擦副载流摩擦磨损性能与稳定性的影响[J].粉末冶金材料科学与工程, 2022, 27(6): 648-658. YU Xinyue, MA Zhifei, ZHANG Lei, et al.Effect of load on current-carrying friction and wear performance and stability of AuNi9/PdNi-Au friction pair[J].Materials Science and Engineering of Powder Metallurgy, 2022, 27(6): 648-658. [8] XIE X, ZHANG L, XIAO J, et al.Sliding electrical contact behavior of AuAgCu brush on Au plating[J].Transactions of Nonferrous Metals Society of China, 2015, 25: 3029-3036. [9] 尹念, 张执南, 张俊彦. 导电滑环Au涂层摩擦磨损行为的分子动力学模拟[J].摩擦学学报, 2018, 38(1): 108-114. YIN Nian, ZHANG Zhinan, ZHANG Junyan.Moleculardynamics simulation of friction and wear behaviors of Au coating for conductive slip ring[J].Tribology, 2018, 38(1): 108-114. [10] 李长江, 李臣政, 张涛, 等. 低轨卫星滑环磨损寿命影响因素研究[J].上海航天, 2019, 36(S2): 79-83. LI Changjiang, LI Chenzheng, ZHANG Tao, et al.Study on the factors affecting wear life of the slip ring of LEO satellite[J].Aerospace Shanghai, 2019, 36(S2): 79-83. [11] 谢博华, 鞠鹏飞, 吉利, 等. 电接触材料摩擦学研究进展[J].摩擦学学报, 2019, 39(5): 656-668. XIE Bohua, JU Pengfei, JI Li, et al.Advances in tribology of contact materials[J].Tribology, 2019, 39(5): 656-668. [12] 范长湘, 徐赛, 杜杰彬, 等. 银基电接触材料载流摩擦磨损的研究进展[J].材料研究与应用, 2023, 17(3): 495-502. FAN Changxiang, XU Sai, DU Jiebin, et al.Research progress in current-carrying friction and wear of silver-based electri-cal contact materials[J].Materials Research and Application, 2023, 17(3): 495-502. [13] 周元子, 李利, 朱林林, 等. 银基复合材料真空电接触特性[J].中南大学学报(自然科学版), 2020, 51(11): 3152-3158. ZHOU Yuanzi, LI Li, ZHU Linlin, et al.Sliding electrical contact behavior of silver-based composite in vacuum[J].Journal of Central South University (Science and Technology), 2020, 51(11): 3152-3158. [14] 李云. 低摩擦银基复合材料的摩擦学行为研究[D].长沙: 中南大学, 2022. LI Yun.Tribologocal behaviors of silver-based composites wit low friction[D].Changsha: Central South University, 2022. [15] SUN Y, WU J S, ZHANG L.Fabrication of Ag-WS2 composites with preferentially oriented WS2 and its anisortropic tribology behavior[J].Materials Letters, 2020, 260: 126975. [16] KANG X, YU S, YANG H L, et al.Tribological behavior of and microstructural evolution of lubricating film of silver matrix self-lubricating nanocomposite[J].Friction, 2020, 9: 941-951. [17] ZHU X C, ZHANG S M, ZHANG L, et al.Frictional behavior and wear mechanisms of Ag/MoS2/WS2 composite under reciprocating microscale sliding[J].Tribology International, 2023, 158: 108510. [18] BROWN L, KUHLMANN W D, JESSER W.Testing and evaluation of metal fiber brush operation on slip rings and commutators[J].IEEE Transactions on Components and Packaging Technologies, 2008, 31(2): 485-494. [19] WU C P, YI D Q, WENG W, et al.Influence of alloy components on arc erosion morphology of Ag/MeO electrical contact materials[J].Transactions of Nonferrous Metals Society of China, 2016, 26(1): 185-195. [20] LIN Z J, FAN S Y, LIU M M, et al.Excellent anti-arc erosion performance and corresponding mechanisms of a nickel-belt-reinforced silver-based electrical contact material[J].Journal of Alloys and Compounds, 2019, 788: 163-171. [21] WU G N, DING K L, XU Z L, et al.Pantograph-catenary electrical contact system of high-speed railways: recent progress, challenges, and outlooks[J].Railway Engineering Science, 2022, 30: 437-467. [22] 刘满门, 谢明, 杨有才, 等. 银基电接触材料新体系研究进展[J].电工材料, 2023(2): 77-83. LIU Manmen, XIE Ming, YANG Youcai, et al.Research progress on new systems of silver-based electrical cntact materials[J].Electrical Engineering Materials, 2023(2): 77-83. [23] 刘钰, 程建, 祁松松, 等. 导电滑环热真空试验污染物抑制方法试验研究[J].环境技术, 2020, 38(4): 58-61. LIU Yu, CHENG Jian, QI Songsong, et al.Experimental study on contaminant suppression method for thermal vacuum test of electric conduction link[J].Environmental Technology, 2020, 38(4): 58-61.