Abstract:Based on the Gaussian heat source model, thermal conductivity model, and Flow-3D software, a powder particle model of coal gangue and polyethersulfone (PES) powder, as well as a three-dimensional model of coal gangue/PES (CPES) composite material powder bed, were established to numerically simulate the temperature field during the selected laser sintering process of CPES composites. The influences of laser power, scanning speed, and scanning space on the formation of single and double pass sintered layers were studed, the values of sintering process parameters was predicted and verified through experiments. The results show that when the laser power is 15 W, the average temperature of the melten pool is 596 K, the impact strength of the sintered part is 179.4 MPa, the melt path is relatively straight, the spheroidization phenomenon disappears, and the bonding with the powder is good, forming a high-quality melt path; When the scanning speed is 1 800 mm/s, the average depth of the molten pool is 99 um, the average width is 200 μm, and the impact strength of the sintered part is 173.5 MPa, the melting area is almost circular, the length of the melten pool is the shortest, the heat accumulation in the melt path is significant, and no deflection phenomenon is found; When the scanning space is 100 μm, the overlap rate of the melt path is 60.8%, and the impact strength of the sintered part is 176.2 MPa, the surface transition of the overlap area between two melt paths is smooth and continuous, without any holes or spheroidization phenomenon.
[1] 郭富强, 刘昆仑, 俞乔, 等. 煤矸石综合利用途径探讨[J]. 煤炭加工与综合利用, 2023(8): 89-93, 98. GUO Fuqiang, LIU Kunlun, YU Qiao, et al.Exploration of comprehensive utilization approaches for coal gangue[J]. Coal Processing and Comprehensive Utilization, 2023(8): 89-93, 98. [2] 李钰, 王行行. 煤矸石利用现状及路用性能研究[J]. 交通科技与管理, 2023, 4(16): 135-137. LI Yu, WANG Xingxing.Research on the current utilization status and road performance of coal gangue[J]. Transportation Technology and Management, 2023, 4(16): 135-137. [3] 王红美. 煤矸石综合利用现存问题分析与解决对策研究[J]. 资源节约与环保, 2022(1): 115-117. WANG Hongmei.Analysis of existing problems and research on solutions for the comprehensive utilization of coal gangue[J]. Resource Conservation and Environmental Protection, 2022(1): 115-117. [4] 宋歌. 浅析3D打印技术的发展及其软件技术的实现[J]. 中国设备工程, 2021(9): 11-12. SONG Ge.Analysis of the development of 3D printing technology and its software implementation[J]. China Equipment Engineering, 2021(9): 11-12. [5] 姚层林. 3D打印技术的应用及产业化发展研究[J]. 化纤与纺织技术, 2021, 50(5): 98-99. YAO Cenglin.Research on the application and industrialization development of 3D printing technology[J]. Chemical Fiber and Textile Technology, 2021, 50(5): 98-99. [6] 陈晖, 马江可, 谭博, 等. GF含量对GF/PES激光烧结件性能的影响[J]. 塑料工业, 2019, 49(9): 102-105. CHEN Hui, MA Jiangke, TAN Bo, et al.The effect of GF content on the properties of GF/PES laser sintered parts[J]. Plastic Industry, 2019, 49(9): 102-105. [7] 陈晖, 郭振, 王永吉, 等. 空心玻璃微珠/聚醚砜树脂轻质激光烧结件的研究[J]. 塑料工业, 2019, 49(9): 95-97. CHEN Hui, GUO Zhen, WANG Yongji, et al.Research on hollow glass microspheres/polyethersulfone resin lightweight laser sintered parts[J]. Plastic Industry, 2019, 49(9): 95-97. [8] 杨紫微, 陈超, 吴谊友, 等. 选区激光熔化成形 Al-Ce-Sc-Zr合金的工艺优化与组织性能[J]. 粉末冶金材料科学与工程, 2023, 28(2): 170-179. YANG Ziwei, CHEN Chao, WU Yiyou, et al.Process optimization and microstructure properties of Al-Ce-Sc-Zr alloy formed by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(2): 170-179. [9] 赵文龙, 孙加林, 皇志富, 等. 石墨烯-碳纳米管/WC陶瓷刀具材料的裂纹扩展与力学性能预报模拟[J]. 粉末冶金材料科学与工程, 2023, 28(2): 93-112. ZHAO Wenlong, SUN Jialin, HUANG Zhifu, et al.Simulation of crack propagation and mechanical properties prediction of graphene carbon nanotubes/WC ceramic tool materials[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(2): 93-112. [10] 艾永康, 刘祖铭, 张亚洲, 等. 选区激光熔融制备Cu-Cr- Nb-Ce合金组织与性能的高温稳定性[J]. 粉末冶金材料科学与工程, 2022, 27(5): 478-487. AI Yongkang, LIU Zuming, ZHANG Yazhou, et al.High temperature stability of microstructure and properties of Cu-Cr-Nb-Ce alloy prepared by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(5): 478-487. [11] 胡海霞, 刘咏, 黄千里, 等. 制备工艺对粉末冶金FeCrNi 中熵合金耐腐蚀性能的影响[J]. 粉末冶金材料科学与工程, 2023, 28(5): 490-499. HU Haixia, LIU Yong, HUANG Qianli, et al.The effect of preparation process on the corrosion resistance of entropy alloy in powder metallurgy FeCrNi[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(5): 490-499. [12] 汪家瑜, 方华婵, 张芊芊, 等. 碳纤维粉末改性铁基粉末冶金材料的组织与性能[J]. 粉末冶金材料科学与工程, 2023, 28(4): 390-403. WANG Jiayu, FANG Huachan, ZHANG Qianqian, et al.Structure and properties of carbon fiber powder modified iron-based powder metallurgy materials[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(4): 390-403. [13] 方静. 碳纳米管/木塑选择性激光烧结机理及制件力学性能研究[D]. 哈尔滨: 东北林业大学, 2019. FANG Jing.Research on the mechanism and mechanical properties of carbon nanotubes/wood plastic selective laser sintering[D]. Harbin: Northeast Forestry University, 2019. [14] MEHDIPOUR F, GEBHARDT U, KÄSTNER M. Anisotropic and rate-dependent mechanical properties of 3D printed polyamide 12—a comparison between selective laser sintering and multi jet fusion[J]. Results in Materials, 2021, 11: 100213. [15] 张慧, 刘大坤, 郭艳玲, 等. 选择性激光烧结杨木/热塑性聚氨酯的成型性能研究[J]. 林产化学与工业, 2021, 41(2): 17-23. ZHANG Hui, LIU Dakun, GUO Yanling, et al.Research on the forming performance of selective laser sintering of poplar/thermoplastic polyurethane[J]. Forestry Chemistry and Industry, 2021, 41(2): 17-23. [16] QADRI S I A. A critical study and analysis of process parameters of selective laser sintering rapid prototyping[J]. Materials Today: Proceedings, 2022, 49(5): 1980-1988. [17] 荆奕菲, 吴海华. 球形石墨碎片选择性激光烧结成形工艺实验研究[J]. 中国标准化, 2022(3): 196-200. JING Yifei, WU Haihua.Experimental study on selective laser sintering process for spherical graphite fragments[J]. China Standardization, 2022(3): 196-200. [18] ABOUBAKER Idriss Bolad Idriss. 牧豆树/聚醚砜复合材料的选择性激光烧结过程仿真及工艺研究[D]. 哈尔滨: 东北林业大学, 2023. ABOUBAKER Idriss Bolad Idriss. Simulation and process study on selective laser sintering of prosopis chilensis/polyethersulfone composite materials[D]. Harbin: Northeast Forestry University, 2023. [19] ABDELMOULA M, KÜÇÜKTÜRK G, GROSSIN D, et al. Direct selective laser sintering of silicon carbide: realizing the full potential through process parameter optimization[J]. Ceramics International, 2023, 49(20): 32426-32439. [20] GREINER S, DRUMMER D.Understanding aspect ratio effects in laser powder bed fusion of polyamide 12 by means of infrared thermal imaging[J]. Procedia CIRP, 2022, 111: 253-256. [21] 朱琳, 许晓伟, 刘壮. 基于Flow3D软件对激光熔覆工艺过程的仿真研究[J]. 数字印刷, 2022(3): 107-114. ZHU Lin, XU Xiaowei, LIU Zhuang.Simulation study on laser cladding process based on Flow3D software[J]. Digital Printing, 2022(3): 107-114. [22] 解瑞东, 朱尽伟, 钟琪, 等. 基于神经网络的激光选区烧结温度预[J]. 激光与光电子学进展, 2022, 59(19): 305-312. XIE Ruidong, ZHU Jinwei, ZHONG Qi, et al.Neural network-based laser selective sintering temperature prediction[J]. Progress in Laser and Optoelectronics, 2022, 59(19): 305-312. [23] 王家金. 激光加工技术[M]. 北京: 中国计量出版社, 1992: 65-69. WANG Jiajin.Laser Processing Technology[M]. Beijing: China Metrology Publishing House, 1992: 65-69. [24] 陈青果, 韦玉堂, 张君彩, 等. SLS中激光功率与扫描速度匹配的优化设计[J]. 煤矿机械, 2009, 30(1): 117-119. CHEN Qingguo, WEI Yutang, ZHANG Juncai, et al.Optimization design of laser power and scanning speed matching in SLS[J]. Coal Mining Machinery, 2009, 30(1): 117-119. [25] 曲芳, 郝帅, 沈斌, 等. 石灰石/PES复合材料选区激光烧结温度场数值模拟与实验[J]. 塑料工业, 2022, 50(4): 36-41, 76. QU Fang, HAO Shuai, SHEN Bin, et al.Numerical simulation and experiment of temperature field during selective laser sintering of limestone/PES composite materials[J]. Plastic Industry, 2022, 50(4): 36-41, 76. [26] 宁礼佳, 于跃强, 郭艳玲, 等. 激光烧结核桃壳/Co-PES粉末的温度场有限元模拟[J]. 塑料工业, 2019, 47(7): 49-53. NING Lijia, YU Yueqiang, GUO Yanling, et al.Finite element simulation of temperature field in laser fired tuberculosis peach shell/Co-PES powder[J]. Plastic Industry, 2019, 47(7): 49-53. [27] 孟娟, 严波, 吴国洪, 等. 选择性激光烧结的温度场三维有限元模拟[J]. 模具技术, 2019(2): 1-6. MENG Juan, YAN Bo, WU Guohong, et al.Three dimensional finite element simulation of temperature field in selective laser sintering[J]. Mold Technology, 2019(2): 1-6.