Effect of multiple laser cladding processes on microstructure and properties of Fe-based alloy coatings
FU Li1,3, HUANG Huanhuan1,3, CHEN Xiaoming1,3, LIU Wei1,3, ZHAO Jian2,3, ZHANG Lei1,2, ZHOU Xialiang1,3
1. Standard & Quality Control Research Institute, Ministry of Water Resources, Hangzhou 310012, China;; 2. Hangzhou Machinery Design & Research Institute, Ministry of water resources, Hangzhou 310012, China;; 3. Key Laboratory of Surface Engineering of Equipments for Hydraulic Engineering of Zhejiang Procince,Hangzhou 310012, China
Abstract:A FeCoCrNiAlTiSi Fe-based alloy coating was prepared on the substrate Q235 steel surface by repetitive preplaced powder type laser cladding technology. XRD, SEM, microhardness, and electrochemical test, etc. were used to measure and analyze the phase composition, morphology, microhardness and electrochemical properties of the coating. The results show that the composition of the coating is basically stable as Fe50Co10Cr10Ni10Al1Ti1Si10 phase after repeated cladding. Its main structure transforms from BCC to FCC and with enriched (Al,Ni) phase. In addition, the microhardness value is higher than that of the base material, approaching closing to 700 HV, and the over-passivation potential extends to 0.212 V and corrosion current density 1.69×10-6 A/cm2.
[1] SHENG Wenjie, YANG Xiao, WANG Cong, et al.Nano-crystallization of high-entropy amorphous NbTiAlSiWxNy films prepared by magnetron sputtering[J]. Entropy-Switz, 2016, 18(6): 226-232. [2] YEH J W, CHEN S K, LIN S J, et al.Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [3] ALANEME K K, BODUNRIN M O, OKE S R.Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: a review[J]. Journal of Materials Research & Technology, 2016, 5(4): 384-393. [4] MA Yue, JIANG Beibei, LI Chunling, et al.The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys[J]. Metals- Open Access Metallurgy Journal, 2017, 7(2): 57. [5] YOUSSEF K M, ZADDACH A J, NIU C, et al.A novel low-density, high-hardness, high-entropy alloy with close- packed single-phase nanocrystalline structures[J]. Materials Research Letters, 2015, 3(2): 95-99. [6] WU Chenliang, ZHANG Song, ZHANG Chunhua, et al.Phase evolution characteristics and corrosion behavior of FeCoCrAlCu-X 0.5 coatings on cp Cu by laser high-entropy alloying[J]. Optics & Laser Technology, 2017, 94: 68-71. [7] 董勇. Al-Cr-Fe-Ni-M系多相高熵合金微观组织与力学性能的基础研究[D]. 大连: 大连理工大学, 2016: 1-149. DONG Yong.Fundamental study on microstructure and mechanical properties in multi-phase Al-Cr-Fe-Ni-M high entropy alloys[D]. Dalian: Dalian University of Technology, 2016: 1-149. [8] 孔蛟润. 铝和锰元素对CoCrFeNiTi系高熵合金组织与性能的影响[D]. 大连: 大连理工大学, 2016: 1-63. KONG Jiaorun.Effect of Al and Mn on microstructure and mechanical properties of CoCrFeNiTi high-entropy alloy system [D]. Dalian: Dalian University of Technology, 2016: 1-63. [9] TUNG C C, YEH J W, SHUN T T, et al.On the elemental effect of AlCoCrCuFeNi high-entropy alloy system[J]. Materials Letters, 2007, 61(1): 1-5. [10] SHANG Caiyun, AXINTE E, SUN Jun, et al.CoCrFeNi(W1-xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering[J]. Materials & Design, 2017, 117: 193-202. [11] ZHANG Hui, YE Pan, HE Yizhu, et al.Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding[J]. Applied Surface Science, 2011, 257(6): 2259-2263. [12] ZHANG B Y, ZHOU Yunjun, LIN Junpin, et al.Solid-solution phase formation rules for multi-component alloys[J]. Advanced Engineering Materials, 2010, 10(6): 534-538. [13] DING Jian, INOUE A, HAN Ye, et al.High entropy effect on structure and properties of (Fe,Co,Ni,Cr)-B amorphous alloys[J]. Journal of Alloys & Compounds, 2016: 696. [14] INOUE A, WANG Zhifeng, LOUZGUINE-LUZGIN D V, et al. Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys[J]. Journal of Alloys & Compounds, 2015, 638: 197-203. [15] 张坚, 吴文妮, 赵龙志. 激光熔覆研究现状及发展趋势[J]. 热加工工艺, 2013, 42(6): 131-134. ZHANG Jian, WU Wenni, ZHAO Longzhi.Research process and development trend of laser cladding[J]. Hot Working Technology, 2013, 42(6): 131-134. [16] 陈小明, 王海金, 周夏凉, 等. 激光表面改性技术及其研究进展[J].材料导报, 2018, 32(S1): 341-344. CHEN Xiaoming, WANG Haijin, ZHOU Xialiang, et al.Laser surface modification technology and research process[J]. Materials Review, 2018, 32(S1): 341-344. [17] 赵坚, 陈小明, 刘伟, 等. 激光熔覆Fe基/Ni基/Co基合金修复层的微观结构及抗磨损性能[J]. 材料保护, 2018, 51(4): 16-19. ZHAO Jian, CHEN Xiaoming, LIU Wei, et al.Microstructure and wear resistance of Fe-based/Ni-based/Co-based repaired coating by laser cladding[J]. Journal of Materials Protection, 2018, 51(4): 16-19. [18] 李养良, 潘东, 王洪涛, 等. 稀土对Fe基合金激光熔覆层组织性能的影响[J]. 材料热处理学报, 2013, 34(3): 145-149. LI Yangmin, PAN Dong, WANG Hongtao, et al.Effect of rare earth element on microstructure and properties of laser clad Fe-based alloy coatings[J]. Transactions of Materials and Heat Treatment, 2013, 34(3): 145-149. [19] 郑亮. 钛合金表面激光熔覆二硅化钼涂层的组织与性能的研究[D]. 上海: 上海工程技术大学, 2016: 1-75. ZHENG Liang.Microstructure and properties of MoSi2 coating laser cladding on titanium alloy[D]. Shanghai: Shanghai University of Engineering Science, 2016: 1-75. [20] 晁明举. 金属材料表面激光淬火和激光熔覆若干关键技术研究[D]. 郑州: 郑州大学, 2003: 1-146. CHAO Mingju.Studies of key technologies on modification of metal surface by laser hardening and laser cladding[D]. Zhengzhou: Zhengzhou University, 2003: 1-146. [21] 李伟翔. 铁基表面激光熔覆镍基WC的组织和性能研究[D]. 上海: 上海工程技术大学, 2010: 1-71. LI Weixiang.Research on property and micro-structure of laser cladding WC-Ni layers on steel[D]. Shanghai: Shanghai University of Engineering Science, 2010: 1-71.