Abstract:The CoCrCuFeNi high-entropy alloy was prepared by vacuum hot-press sintering. The effects of hot-pressing time and pressure on the microstructure and mechanical properties of the CoCrCuFeNi high-entropy alloy were studied. The results show that when the pressure is 10 MPa, all high-entropy alloys contain dual FCC phases and a small amount of Cr-rich phase. With the increase of hot-pressing time, the size of the Cr-rich phase increases and the compressive strength and hardness of the high-entropy alloy first increase and then decrease. When the hot-pressing time is 1.5 h, and the pressure increases from 10 MPa to 30 MPa, the separation phenomenon of Cu-rich FCC phase and Cu-poor phase disappears in the alloy. With the increase of hot-pressing pressure, the compressive strength of the high-entropy alloy first increases and then decreases, but there is no significant change in hardness. When the hot-pressing time is 1.5 h and the pressure is 20 MPa, The alloy has the highest compressive strength of 1 229 MPa and a hardness (HV) of 3 136 MPa.
赵振国, 朱和国. 真空热压时间和压力对CoCrCuFeNi高熵合金组织与力学性能的影响[J]. 粉末冶金材料科学与工程, 2022, 27(2): 180-186.
ZHAO Zhenguo, ZHU Heguo. Effects of vacuum hot-pressing time and pressure on the microstructure and mechanical properties of CoCrCuFeNi high-entropy alloy. Materials Science and Engineering of Powder Metallurgy, 2022, 27(2): 180-186.
[1] YEH J W, CHEN S K, LIN S J, et al.Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2] CANTOR B,CHANG I T H, KNIGHT P, et al. Microstructure development in equiatomic multicomponent alloys[J]. Materials Science and Engineering A, 2004, 375/377: 213-218. [3] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J].材料工程, 2019, 47(6): 94-100. WANG Guifang, LIU Zhongxia, ZHANG Guopeng.Effect of milling time on microstructure and mechanical properties of TiC-CoCrFeNi composites prepared by hot pressing sintering[J]. Journal of Materials Engineering, 2019, 47(6): 94-100. [4] 赵堃, 艾桃桃, 冯小明, 等. 高强高韧非等原子(FeCoNiCr)100-xMnx高熵合金的组织结构和力学性能[J]. 中国有色金属学报, 2021, 31(1): 1-9. ZHAO Kun, AI Taotao, FENG Xiaoming, et al.Microstructure and mechanical properties of (FeCoNiCr)100-xMnx non- equiatomic high-entropy alloys with high strength and ductility[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1): 1-9. [5] 刘咏, 曹远奎, 宋旼, 等. 粉末冶金高熵合金进展研究[J]. 中国有色金属学报, 2019, 29(9): 2155-2184. LIU Yong, CAO Yuankui, SONG Min, et al.Progress of powder metallurgical high entropy alloys[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2155-2184. [6] YIM D, KIM W, PRSVEEN S, et al.Shock wave compaction and sintering of mechanically alloyed CoCrFeMnNi high- entropy alloy powders[J]. Materials Science & Engineering A, 2017, 708: 291-300. [7] PRAVEEN S, MURTY B S, KOTTADA S R.Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering[J]. The Minerals, Metals & Materials Society, 2013, 65(12): 1797-1804. [8] RAO K R, SINHA S K.Effect of sintering temperature on microstructural and mechanical properties of SPS processed CoCrCuFeNi based ODS high entropy alloy[J]. Materials Chemistry and Physics, 2020, 256: 123709. [9] CHENG H, XIE Y C, TANG Q H, et al.Microstructure and mechanical properties of FeCoCrNiMn high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering[J]. Transactions of Nonferrous Metals Socirty of China, 2018, 28(7): 1360-1367. [10] WU B, XIE Z Y, HUANG J C, et al.Microstructures and thermodynamic properties of high-entropy alloys CoCrCuFeNi[J]. Intermetallics, 2018, 93: 40-46. [11] CHEN X, ZHAI S D, GAO D, et al.Microstructural transition of (CuFeMnNi)1-xCrx(x=0-0.25) high-entropy alloys[J]. Journal of Materials Engineering and Performance, 2019, 28: 4502-4509. [12] KIM Y K, LEE J B, HONG S K, et al.Strengthening and fracture of deformation-processed dual fee-phase CoCrFeCuNi and CoCrFeCu1.71Ni high entropy alloys[J]. Materials Science & Engineering A, 2020, 781: 139241. [13] THORHALLSSON A I, CSÁKI I, GEAMBAZU L E, et al. Effect of alloying ratios and Cu-addition on corrosion behaviour of CoCrFeNiMo high-entropy alloys in superheated steam containing CO2, H2S and HCl[J]. Corrosion Science, 2021, 178: 109083. [14] 梁基谢夫. 金属二元系手册[M]. 郭青蔚, 译. 北京: 化学工业出版社, 2008: 440-442. LIANG Jixiefu.Handbook of Metal Binary System[M]. GUO Qingwei, trans. Beijing: Chemical Industry Press, 2008: 440-442. [15] KOCKS U F, MECKING H.Physics and phenomenology of strain hardening: the FCC case[J]. Progress in Materials Science, 2003, 4(3): 171-273. [16] BAI Y J, JIANG H, YAN K, et al.Phase transition and heterogeneous strengthening mechanism in CoCrFeNiMn high-entropy alloy fabricated by laser-engineered net shaping via annealing at intermediate-temperature[J]. Journal of Materials Science & Technology, 2021, 92: 129-137. [17] REN B, LIU Z X, LI D M, et al.Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system[J]. Journal of Alloy and Compounds, 2010, 493(1/2): 148-153. [18] TSAI K Y, TSAI M H, THE J W.Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Material, 2013, 61(13): 4887-4897. [19] WANG R, CHEN W M, ZHONG J, et al.Experimental and numerical studies on the sluggish diffusion in face centered cubic Co-Cr-Cu-Fe-Ni high-entropy alloy[J]. Journal of Material Science & Technology, 2018, 34(10): 1791-1798. [20] 果世驹. 粉末烧结理论[M]. 北京: 冶金工业出版社, 1998, 254-256. GUO Shiju.Powder Sintering Theory[M]. Beijing: Metallurgical Industry Press, 1998, 254-256. [21] 龙雁, 彭亮, 张伟华, 等. 放电等离子烧结Fe50Mn30 Co10Cr10高熵合金的显微组织演化[J]. 稀有金属, 2021, 45(7): 769-777. LONG Yan, PENG Liang, ZHANG Weihua, et al.Microstructure evolution of Fe50Mn30Co10Cr10 high-entropy alloy fabricated by spark plasma sintering[J]. Chinese Journal of Rare Metals, 2021, 45(7): 769-777.