Abstract:With a broad freezing range and a high content of alloy elements, 2024 prepared by selective laser melting still has some defects like hot tearing and columnar grains. In this work, TiB2/2024 composite powders with different nanoscale TiB2 contents were prepared by low-energy ball milling and used for selective laser melting process. The effects of TiB2 content on the phase, microstructure and mechanical properties of 2024 aluminium alloy were studied by means of X-ray diffraction, metallographic microscope, EBSD and SEM. The results show that the addition of 1% nano-TiB2 makes the coarse columnar grains transform into equiaxed grains, and improve density of SLM samples the grain size decreases from 19.9 μm to 4.25 μm and the relative density increases from 97.3% to 98.2%. Tensile strength, elongation and micro-hardness increase by 23%, 208% and 5.1%, respectively. Furthermore, tensile strength and elongation reach 401.2 MPa and 10.4% respectively at T6 state. When the mass fraction of TiB2 increases to 3%, the refining effect is weakened to 3.97 μm, and the agglomeration of nano-TiB2 grew to micron-scale. The density and comprehensive mechanical properties of the samples decreases sharply.
胡亮, 刘允中, 涂诚, 周志光. 纳米TiB2对激光选区熔化2024铝合金显微组织与力学性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(4): 365-373.
HU Liang, LIU Yunzhong, TU Cheng, ZHOU Zhiguang. Effects of nano-TiB2 particles on microstructure and mechanical properties of AA2024 deposited by selective laser melting. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4): 365-373.
[1] 黎志勇, 杨斌, 王鹏程, 等. 金属3D打印技术研究现状及其趋势[J]. 新技术新工艺, 2017(4): 25-28. LI Zhiyong, YANG Bin, WANG Pengcheng, et al.Research status and trend of metal 3D printing technology[J]. New Technology & New Process, 2017(4): 25-28. [2] 杨守杰, 戴圣龙. 航空铝合金的发展回顾与展望[J]. 材料导报, 2005, 19(2): 76-80. YANG Shoujie, DAI shenglong. A glimpse at the development and application of aluminum alloys in aviation industry[J]. Materials Reports, 2005, 19(2):76-80. [3] 董鹏, 李忠华, 严振宇, 等. 铝合金激光选区熔化成形技术研究现状[J]. 应用激光, 2015(5): 607-611. DONG Peng, LI Zhonghua, YAN Zhenyu, et al.Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015(5): 607-611. [4] 王梦瑶. Al-Si合金的激光选区熔化成形特性及性能的研究[D]. 武汉: 华中科技大学, 2015: 1-49. WANG Mengyao.Characteristics and performance of selective laser melting Al-Si alloy[D]. Wuhan: Huazhong University of Science and Technology, 2015: 1-49. [5] 张文奇. AlSi10Mg合金粉末的选区激光熔化成形工艺及性能研究[D]. 武汉: 华中科技大学, 20151-57. ZHANG Wenqi.Investigation on process and performance of AlSi10Mg parts fabricated by selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2015: 1-57. [6] 朱海红, 廖海龙. 高强铝合金的激光选区熔化成形研究现状[J]. 激光与光电子学进展, 2018, 55(1): 16-22. ZHU Haihong, LIAO Hailong.Research status of selective laser melting of high strength aluminum alloy[J]. Laser and Optoelectronics Progress, 2018, 55(1): 16-22 [7] AHUJA B, KARG M, NAGULIN K, et al.Fabrication and characterization of high strength Al-Cu alloys processed using laser beam melting in metal powder bed[J]. Physics Procedia, 2014, 56(56): 135-146. [8] ZHANG H, ZHU H, QI T, et al.Selective laser melting of high strength Al-Cu-Mg alloys: Processing, microstructure and mechanical properties[J]. Materials Science & Engineering A, 2016, 656: 47-54. [9] ZHANG H, ZHU H, NIE X, et al.Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scripta Materialia, 2017, 134: 6-10. [10] MARTIN J H, YAHATA B D, HUNDLEY J M, et al.3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365-371. [11] KING W E, BARTH H D, CASTILLO V M, et al.Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing[J]. Journal of Materials Processing Technology, 2014, 214(12): 2915-2925. [12] DEBROY T, WEI H L, ZUBACK J S, et al.Additive manufacturing of metallic components-process, structure and properties[J]. Progress in Materials Science, 2017: 92-101. [13] WANG X C, LAOUI T, BONSE J, et al.Direct selective laser sintering of hard metal powders: experimental study and simulation[J]. International Journal of Advanced Manufacturing Technology, 2002, 19(5): 351-357. [14] ROSCOE R.The viscosity of suspensions of rigid spheres[J]. British Journal appl phys, 1952, 3(8): 267. [15] 胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010: 243-244. HU Gengxiang, CAI Xun, RONG Yonghua.Fundamentals of Materials Science[M]. Shanghai: Shanghai Jiaotong University Press, 2010: 243-244. [16] 柏久阳. 2219铝合金GTA增材制造及其热处理过程的组织演变[D]. 哈尔滨: 哈尔滨工业大学, 2017: 1-140. BO Jiuyang.Microstructure evolution of 2219-Al during GTA based additive manufacturing and heat treatment[D]. Harbin: Harbin Institute of Technology, 2017: 1-140. [17] 李雅莉. 选区激光熔化AlSi10Mg温度场及应力场数值模拟研究[D]. 南京: 南京航空航天大学, 2015: 1-86. LI Liya.Numerical Investigation on temperature field and stress field during selective laser melting of AlSi10Mg[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 1-86. [18] 刘兆伟, 朱莹莹, 谭琳, 等. 2024铝合金航空薄壁型材热处理工艺研究[J]. 有色金属加工, 2018(6): 46-48. LIU Zhaowei, ZHU Yingying, TAN Lin, et al. Study on heat treatment technology of2024 thin-walled aerial Aluminum alloy[J]. Nonferrous Metals Processing, 2018(6): 46-48. [19] 王泓乔. Al基纳米复合材料机械合金化制备及选区激光熔化成形研究[D]. 南京: 南京航空航天大学, 2015: 1-82. WANG Hongqiao.Al based nanocomposites prepared by mechanical alloying and selective laser melting fabrication[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 1-82. [20] 余开斌, 刘允中, 杨长毅. 热处理对选区激光熔化成形AlSi10Mg合金显微组织及力学性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(3): 298-305. YU Kaibin, LIU Yunzhong, YANG Changyi.Effects of heat treatment on microstructures and mechanical properties of AlSi10Mg alloy produced by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(3): 298-305. [21] 桂奇文. 热处理工艺对2024铝合金析出相及性能的影响[D]. 长沙: 湖南大学, 2012: 1-57. GUI Wenqi.The influence of heat treatment process on the precipitates and properties of 2024 aluminum alloy[D]. Changsha: Hunan University, 2012: 1-57.