Abstract:In this paper, carbon fiber paper (CFP) was used as the carrier to prepare low-loading IrO2-RuO2/Co3O4@CFP catalysts with different Ir/Ru atomic ratios through hydrothermal, in-situ electrochemical displacement reaction, and high-temperature calcination. The microstructure and electrochemical performance of the catalysts were characterized by scanning electron microscope, high-resolution transmission electron microscope, X-ray diffractometer, X-ray photoelectron spectrometer, and electrochemical measurements. The results show that the catalyst with an Ir/Ru atomic ratio of 4∶1 exhibits the optimal oxygen evolution reaction catalytic activity and stability in acidic media. It achieves an oxygen evolution overpotential of 225 mV at a current density of 10 mA/cm2 and a Tafel slope of 45.97 mV/dec. Moreover, no obvious performance degradation is observed after continuous reaction for 50 h at a current density of 100 mA/cm2. This study can provide design ideas and feasible strategies for the synthesis of low-cost and high-performance acidic oxygen evolution catalysts.
白宗哲, 李丽, 雷霆. 低载量IrO2-RuO2酸性析氧催化剂的制备和性能研究[J]. 粉末冶金材料科学与工程, 2025, 30(4): 310-324.
BAI Zongzhe, LI Li, LEI Ting. Preparation and performance study of low-loading IrO2-RuO2 acidic oxygen evolution catalysts. Materials Science and Engineering of Powder Metallurgy, 2025, 30(4): 310-324.
[1] WANG G G X. Development of clean energy and environmental technologies to address humanity's top problems[J]. Frontiers of Chemical Science and Engineering, 2012, 6(1): 1-2.
[2] BONDARENKO V L, ILYINSKAYA D N, KAZAKOVA A A, et al.Introduction to hydrogen energy[J]. Chemical and Petroleum Engineering, 2022, 57(11/12): 1008-1014.
[3] 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8): 189-207.
ZHANG Shenxi, WANG Danyang, CHENG Haozhong, et al.Key technologies and challenges of low-carbon integrated energy system planning for carbon emission peak and carbon neutrality[J]. Automation of Electric Power Systems, 2022, 46(8): 189-207.
[4] 张和平. 双碳背景下新能源技术发展现状及展望[J]. 现代化工, 2022, 42(8): 7-9.
ZHANG Heping.Prospect of new energy technology under “carbon peak and carbon neutralization”[J]. Modern Chemical Industry, 2022, 42(8): 7-9.
[5] ZHANG R, PEARCE P E, DUAN Y, et al.Importance of water structure and catalyst-electrolyte interface on the design of water splitting catalysts[J]. Chemistry of Materials, 2019, 31(20): 8248-8259.
[6] ZHAO Y, ZHANG S B, WANG M Y, et al.Engineering iridium-based metal organic frameworks towards electrocatalytic water oxidation[J]. Dalton Transactions, 2018, 47(13): 4646-4652.
[7] SHE L N, ZHAO G Q, MA T Y, et al.On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment[J]. Advanced Functional Materials, 2022, 32(5): 2108465.
[8] SUN H N, XU X M, SONG Y F, et al.Designing high-valence metal sites for electrochemical water splitting[J]. Advanced Functional Materials, 2021, 31(16): 2009779.
[9] 李永峰, 董新法, 林维明. 固体氧化物燃料电池的现状和未来[J]. 电源技术, 2002, 26(6): 462-465.
LI Yongfeng, DONG Xinfa, LIN Weiming.State-of-art and future of solid oxide fuel cell[J]. Chinese Journal of Power Sources, 2002, 26(6): 462-465.
[10] DINCER I, ACAR C.A review on clean energy solutions for better sustainability[J]. International Journal of Energy Research, 2015, 39(5): 585-606.
[11] LI X X, PAN L Y, ZHANG J Y.Development status evaluation and path analysis of regional clean energy power generation in China[J]. Energy Strategy Reviews, 2023, 49: 101139.
[12] REIER T, NONG H N, TESCHNER D, et al.Electrocatalytic oxygen evolution reaction in acidic environments-reaction mechanisms and catalysts[J]. Advanced Energy Materials, 2017, 7(1): 1601275.
[13] WANG Z Y, GAO W L, XU Q L, et al.Influence of the MnO2 phase on oxygen evolution reaction performance for low-loading iridium electrocatalysts[J]. ChemElectroChem, 2021, 8(2): 418-424.
[14] MORIAU L, SMILJANIĆ M, LONČAR A, et al. Supported iridium-based oxygen evolution reaction electrocatalysts- recent developments[J]. ChemCatChem, 2022, 14(20): e202200586.
[15] LI G Q, JIA H R, LIU H, et al.Nanostructured IrOx supported on N-doped TiO2 as an efficient electrocatalyst towards acidic oxygen evolution reaction[J]. RSC Advances , 2022, 12(45): 28929-28936.
[16] FENG Y, YANG H T, WANG X, et al.Role of transition metals in catalyst designs for oxygen evolution reaction: a comprehensive review[J]. International Journal of Hydrogen Energy, 2022, 47(41): 17946-17970.
[17] EFTEKHARI A.Tuning the electrocatalysts for oxygen evolution reaction[J]. Materials Today Energy, 2017, 5: 37-57.
[18] LI L G, WANG P T, SHAO Q, et al.Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction[J]. Advanced Materials, 2021, 33(50): 2004243.
[19] FAN Z H, JIANG J, AI L H, et al.Rational design of ruthenium and cobalt-based composites with rich metal-insulator interfaces for efficient and stable overall water splitting in acidic electrolyte[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 47894-47903.
[20] GONG R, LIU B W, WANG X L, et al.Electronic structure modulation induced by cobalt-doping and lattice-contracting on armor-like ruthenium oxide drives pH-universal oxygen evolution[J]. Small, 2023, 19(4): 2204889.
[21] XIE Y S, SU Y Y, QIN H R, et al.Ir-doped Co3O4 as efficient electrocatalyst for acidic oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2023, 48(39): 14642-14649.
[22] TRAN N Q, LE T A, KIM H, et al.Low iridium content confined inside a Co3O4 hollow sphere for superior acidic water oxidation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16640-16650.
[23] ZAMAN W Q, SUN W, ZHOU Z H, et al.Anchoring of IrO2 on one-dimensional Co3O4 nanorods for robust electrocatalytic water splitting in an acidic environment[J]. ACS Applied Energy Materials, 2018, 1(11): 6374-6380.
[24] QIAO Y J, LUO M, CAI L B, et al.Constructing nanoporous Ir/Ta2O5 interfaces on metallic glass for durable acidic water oxidation[J]. Small, 2024, 20(2): 2305479.
[25] ZHAO P, YUE K H, DAI Y, et al.An integral composite electrode with low Ir loading for efficient acidic oxygen evolution[J]. Chemical Communications, 2025, 61(32): 5934-5937.
[26] LIN L, FU Q, WANG R, et al.Spinel-type oxides for acidic oxygen evolution reaction: mechanism, modulation, and perspective[J]. Advanced Energy and Sustainability Research, 2023, 4(12): 2300075.
[27] WANG C W, DENG R R, GUO M W, et al.Recent progress of advanced Co3O4-based materials for electrocatalytic oxygen evolution reaction in acid: from rational screening to efficient design[J]. International Journal of Hydrogen Energy, 2023, 48(82): 31920-31942.
[28] LI A L, KONG S, GUO C X, et al.Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid[J]. Nature Catalysis, 2022, 5(2): 109-118.
[29] MONDSCHEIN J S, CALLEJAS J F, READ C G, et al.Crystalline cobalt oxide films for sustained electrocatalytic oxygen evolution under strongly acidic conditions[J]. Chemistry of Materials, 2017, 29(3): 950-957.
[30] YU J H, GARCÉS-PINEDA F A, GONZÁLEZ-COBOS J, et al. Sustainable oxygen evolution electrocatalysis in aqueous 1 M H2SO4 with earth abundant nanostructured Co3O4[J]. Nature Communications, 2022, 13(1): 4341.
[31] AHMAD S, EGILMEZ M, ABUZAID W, et al.Efficient medium entropy alloy thin films as bifunctional electrodes for electrocatalytic water splitting[J]. International Journal of Hydrogen Energy, 2024, 52: 1428-1439.
[32] AHMAD S, EGILMEZ M, SHANMUGAM R, et al.Electrochemical hydrogen evolution reaction evaluation of CoNi(Cr/V) medium-entropy alloys in an acidic environment[J]. ACS Applied Energy Materials, 2023, 6(20): 10652-10664.
[33] OWE L E, TSYPKIN M, WALLWORK K S, et al.Iridium-ruthenium single phase mixed oxides for oxygen evolution: composition dependence of electrocatalytic activity[J]. Electrochimica Acta, 2012, 70: 158-164.
[34] ROLLER J M, ARELLANO-JIMÉNEZ M J, JAIN R, et al. Oxygen evolution during water electrolysis from thin films using bimetallic oxides of Ir-Pt and Ir-Ru[J]. Journal of the Electrochemical Society, 2013, 160(6): F716-F730.
[35] MURAKAMI Y, MIWA K, UENO M, et al.Morphology of ultrafine RuO2-IrO2 binary oxide particles prepared by a sol-gel process[J]. Journal of the Electrochemical Society, 1994, 141(9): L118-L120.
[36] FAN R L, MU Q Q, WEI Z H, et al.Atomic Ir-doped NiCo layered double hydroxide as a bifunctional electrocatalyst for highly efficient and durable water splitting[J]. Journal of Materials Chemistry A, 2020, 8(19): 9871-9881.
[37] CARMO M, FRITZ D L, MERGEL J, et al.A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12): 4901-4934.
[38] NAZEMI M, DARBAND G B, DAVOODI A.Interfacial engineering of Ni-Co-Mn@Ni nanosheet-nanocone arrays as high performance non-noble metal electrocatalysts for hydrogen generation[J]. Nanoscale, 2024, 16(22): 10853-10863.
[39] BARATI DARBAND G, IRAVANI D, ZHANG M L, et al.Sustainable and energy-saving hydrogen production via binder-free and in situ electrodeposited Ni-Mn-S nanowires on Ni-Cu 3-D substrates[J]. Nanoscale, 2025, 17(4): 2162-2173.
[40] HOU L Q, JANG H, LIU H H, et al.Synergistic effect of electronic particle-support interactions on the Ir-based multiheterostructure for acidic water oxidation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(48): 15950-15957.
[41] RONG C L, WANG S H, SHEN X, et al.Defect-balanced active and stable Co3O4-x for proton exchange membrane water electrolysis at ampere-level current density[J]. Energy & Environmental Science, 2024, 17(12): 4196-4204.
[42] NIU S Q, KONG X P, LI S W, et al.Low Ru loading RuO2/(Co,Mn)3O4 nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid[J]. Applied Catalysis B: Environmental, 2021, 297: 120442.