Effect of Cr content on high temperature oxidation behavior of porous NiCrMoCu alloys
ZOU Haoran1, LI Xide1, ZHANG Chuo1, YANG Junsheng1, HE Yuehui2
1. School of mechanical engineering, Wuhan Polytechnic University, Wuhan 430023, China; 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Abstract:NiCrMoCu porous material was fabricated by the activation reaction sintering method using Ni, Cr, Mo and Cu element powders as raw materials. X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectrum (EDS), pore size tester were conducted to characterize the phase composition, pore morphology, element valence, element content and pore structure of porous materials before and after high temperature oxidation at 800 ℃. The results indicate that the oxidation mass gain and the decrease rate of permeability of NiCrMoCu porous materials show a trend of decreasing first and then increasing with the increases of Cr content. When the Cr content attains 35%, and the oxidation time is 20 h, the smallest mass gain is 7.31 mg/cm, and the rate of decrease in permeability is 23.41%. When Cr mass fraction ranges from 10% to 35%, the surface composition of the material is mainly Cr2O3. The Cr content continues to increase to 40%, its oxidizing substances are mainly Cr2O3 and NiCr2O4. The addition of alloying element Cr is conducive to the formation of a dense Cr2O3 thin film on the surface, preventing air from continuing to penetrate the alloy substrate to produce oxidation. However, the Cr content continues to increase, the fluffy structure of NiCr2O4 is generated to increase the oxidaion.
邹浩然, 李喜德, 张绰, 杨军胜, 贺跃辉. Cr含量对NiCrMoCu多孔材料高温氧化行为的影响[J]. 粉末冶金材料科学与工程, 2020, 25(4): 312-320.
ZOU Haoran, LI Xide, ZHANG Chuo, YANG Junsheng, HE Yuehui. Effect of Cr content on high temperature oxidation behavior of porous NiCrMoCu alloys. Materials Science and Engineering of Powder Metallurgy, 2020, 25(4): 312-320.
[1] 李维杰, 刘咏, 王岩, 等. Ni-Cr-Al-Fe基合金粉末的高温抗氧化行为[J]. 中国有色金属学报, 2010, 20(12): 2327-2335. LI Weijie, LIU Yong, WANG Yan, et al.High temperature oxidation resistance behavior of Ni-Cr-Al-Fe based alloy powders[J]. Chinese Journal of Nonferrous Metals, 2010, 20(12): 2327-2335. [2] SHI S F, FAN Q, JIA C L, et al.Microstructure sensitivity of α-Cr phase in Ni-Cr based alloy K648[J]. Journal of University of Science & Technology Beijing, 2012, 34(8): 908-914. [3] SULKA G D.Electrochemical behavior of Ni3Al-based intermetallic alloys in NaOH[J]. Intermetallics, 2011, 19(7): 974-981. [4] 姚彩艳, 张林贤. Incoloy Alloy825铁镍基合金的焊接工艺研究[J]. 焊接技术, 2002, 31(6): 19-20. YAO Caiyan, ZHANG Linxian.Research on welding technology of Incoloy Alloy825 iron-nickel-based alloy[J]. Welding Technology, 2002, 31(6): 19-20. [5] 万军. 镍及镍基合金的焊接[J]. 锅炉制造, 2004(3): 32-34. WAN Jun.Welding of nickel and nickel-based alloys[J]. Boiler Manufacturing, 2004(3): 32-34. [6] 李超, 徐桦. 镍及镍基合金耐腐蚀性分析及应用[J]. 河南化工, 2011, 28(Z1):18-21. LI Chao, XU Hua.Analysis and application of corrosion resistance of nickel and nickel-based alloys[J]. Henan Chemical Industry, 2011, 28(Z1): 18-21. [7] 方正春. 镍基合金及其铸造技术[J]. 材料开发与应用, 1994, 9(1): 24-32. FANG Zhengchun.Nickel-based alloy and its casting technology[J]. Development and Application of Materials, 1994, 9(1): 24-32. [8] HUNTZ A M, PUIG T, CONFIGNAL L, et al.Laser melting of an NiCr alloy precoated with carbon: high-temperature oxidation and wear resistance[J]. Materials Science and Engineering, 1989,A121: 555-561. [9] 赖万慧, 王淑荷. 三种NiAl基合金的抗氧化性能[J]. 腐蚀科学与防护技术, 1993,5(3): 213-217. LAI Wanhui, WANG Shuhe.Oxidation resistance of three NiAl- based alloys[J]. Corrosion Science and Protection Technology, 1993, 5(3): 213-217. [10] 柏跃磊, 赫晓东, 朱春城. Fe-Ni-Al合金在900 ℃时的氧化行为研究[J]. 哈尔滨工业大学学报, 2008, 40(1): 65-68. BAI Yuelei, HE Xiaodong, ZHU Chuncheng.Study on oxidation behavior of Fe-Ni-Al alloy at 900 ℃[J]. Journal of Harbin Institute of Technology, 2008, 40(1): 65-68. [11] 孙朝阳, 陈桂才, 武传标, 等. 典型耐热镍基合金抗高温氧化行为研究[J]. 腐蚀科学与防护技术, 2014, 26(4): 345-349. SUN Chaoyang, CHEN Guicai, WU Chuanbiao, et al.Research on high temperature oxidation resistance of typical heat-resistant nickel-based alloys[J]. Corrosion Science and Protection Technology, 2014, 26(4): 345-349. [12] 贾建文, 侯利锋, 杜华云, 等. Sanicro25奥氏体耐热钢的高温氧化和腐蚀行为研究进展[J]. 功能材料, 2019,50(10): 10057-10062. JIA Jianwen, HOU Lifeng, DU Huayun, et al.Research progress on high temperature oxidation and corrosion behavior of Sanicro25 austenitic heat resistant steel[J]. Functional Materials, 2019, 50(10): 10057-10062. [13] 赖仙红, 王延峰, 杨小川, 等. VM12-SHC与T92耐热钢在带压蒸汽中的抗氧化行为比较[J]. 金属热处理, 2019, 44(2): 213-218. LAI Xianhong, WANG Yanfeng, YANG Xiaochuan, et al.Oxida- tion behavior comparison between VM12-SHC and T92 heat resistant steel in pressure steam[J]. Heat Treatment of Metals, 2019, 44(2): 213-218. [14] 张显. 超超临界锅炉用奥氏体耐热钢 Sanicro25 的性能[J]. 发电设备, 2015, 29(6): 439-442. ZHANG Xian.Performance of austenitic heat-resistant steel Sanicro25 for ultra supercritical boiler[J]. Power Generation Equipment, 2015, 29(6): 439-442. [15] LUA X, YANGA J, YANC M, et al.Isothermal oxidation behavior of Ni-Al-Co-Cr-Mo-Ti alloy at 850 ℃ and 950 ℃[J]. Procedia Engineering, 2012, 27: 932-938. [16] 王永刚, 何业东. 氧化物薄膜对Fe3Al高温氧化的影响[J]. 兵器材料科学与工程, 1995, 18(6): 15-18. WANG Yonggang, HE Yedong.Effect of oxide film on high temperature oxidation of Fe3Al[J]. Ordnance Material Science and Engineering, 1995, 18(6): 15-18. [17] 黄晓晓, 李金山, 胡锐, 等. Ni-Cr-W合金在1 100 ℃的氧化膜演变[J]. 稀有金属材料与工程, 2011, 39(11): 1908-1911. HUANG Xiaoxiao, LI Jinshan, HU Rui, et al.Oxide film evolution of Ni-Cr-W alloy at 1 100 ℃[J]. Rare Metal Materials and Engineering, 2011, 39(11): 1908-1911. [18] ZHU Z, CHENG X, YE W, et al.Synthesis of NiCr2O4 spinel coatings with high emissivity by plasma spraying[J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(3): 266-270. [19] 杜伟, 石倩, 代明江, 等. 电弧离子镀 NiCrAlY和 NiCoCr- AlYHfSi 涂层抗高温氧化性能[J]. 材料导报, 2018, 32(13): 2267-2271. DU Wei, SHI Qian, DAI Mingjiang, et al.High temperature oxidation resistance of NiCrAlY and NiCoCrAlYHfSi coatings by arc ion plating[J]. Materials Review, 2018, 32(13): 2267-2271. [20] 庞琳, 李刚. 包覆ZnS对ZnS:Mn发光性质的影响[J]. 化学工程师, 2016, 30(6): 8-11. PANG Lin, LI Gang.Effect of ZnS coating on luminescent properties of ZnS:Mn[J]. Chemical Engineer, 2016, 30(6): 8-11. [21] 郎晓川, 谢宏伟, 翟玉春, 等. CaCl2熔盐中自烧结电解制备粉体Cr3C2及其机制[J]. 稀有金属材料与工程, 2013, 42(9): 1926-1930. LANG Xiaochuan, XIE Hongwei, ZHAI Yuchun, et al.Self- sintering electrolytic preparation of Cr3C2 powder in CaCl2 molten salt and its mechanism[J]. Rare Metal Materials and Engineering, 2013, 42(9): 1926-1930. [22] 辜敏, 陈应龙, 吴亚珍, 等. CuO-SiO2 和 Cu2O-SiO2 薄膜的制备及其光学性能[J]. 无机化学学报, 2017, 33(4): 576-582. GU Min, CHEN Yinglong, WU Yazhen, et al.Preparation and optical properties of CuO-SiO2 and Cu2O-SiO2 thin films[J]. Journal of Inorganic Chemistry, 2017, 33(4): 576-582. [23] 郭家秀, 梁娟, 楚英豪, 等. Ni物种形态对Ni/AC催化剂低温脱硫性能的影响[J]. 催化学报, 2010, 31(3): 278-282. GUO Jiaxiu, LIANG Juan, CHU Yinghao, et al.Effect of Ni Speciation on Ni/AC catalyst desulfurization performance at low temperature[J]. Chinese Journal of Catalysis, 2010, 31(3): 278-282. [24] 孙敏, 肖葵, 董超芳, 等. 300M 和 Cr9 钢在酸性介质中的电化学性能研究[J]. 中国腐蚀与防护学报, 2012, 32(6): 449-454. SUN Min, XIAO Kui, DONG Chaofang, et al.Study on the electrochemical performance of 300M and Cr9 steels in acid media[J]. Journal of Chinese Society for Corrosion and Protection, 2012, 32(6): 449-454. [25] CAMPBELL A J, DANIELSON L, RIGHTER K, et al.High pressure effects on the iron-iron oxide and nickel-nickel oxide oxygen fugacity buffers[J]. Earth & Planetary Ence Letters, 2009, 286(3/4): 556-564.