Effects of w(Co)/w(Ni) ratio on high-temperature oxidation and corrosion resistant behavior in Ti(C,N)-based cermets
LIU Yi1, ZHANG Meimei2, KANG Xiyue2, LIN Nan3, YAN Yan1, QIU Song1, HUANG Jianhua1, HE Yuehui2
1. METCERA Crop. Ltd., Chengdu 610000, China; 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 3. School of Materials Science and Engineering, Hunan University, Changsha 410083, China
Abstract:The effects of Co and Ni binder ratio on microstructure and properties in Ti(C,N) based cermets has been studied. The corrosion behaviors of cermets in high temperature and acid solution have been analyzed systematically. The results indicate that cermet with w(Co)/w(Ni) ratio of 1 has excellent mechanical properties, which TRS and hardness are 1 749 MPa and 93.8 (HRA), respectively. The corrosion resistant of cermets in H2SO4 acid solution increases obviously with adding Ni into binder phase, whereas the mass loss of T3 cermet with w(Co)/w(Ni) ratio of 1 is 0.074 5% after immersion for 120 h. The corrosion mechanisms of cermets in acid solution are the dissolution of binder phase and partly rim phases. The passive regions in anodic polarization curves appear combination with the decrease of w(Co)/w(Ni) ratio, which is proved that the increase of Ni content can promote the solid solution of the elements to the binder phase. The T3 cermet has excellent corrosion resistance, and the self corrosion current density is 3.356 6×10-7 A/cm2. Finally, after oxidized in static air for 10 h under 900 ℃, the mass losses of all cermets with surface area of 2.5 cm2 are lower than 1mg. Moreover, the corrosion behaviors of cermets in high temperature are the prior oxidation of binder phase and the oxidation of Ti, W-riched solid solution phases.
刘毅, 张鹛媚, 康希越, 吝楠, 颜焰, 邱嵩, 黄建华, 贺跃辉. w(Co)/w(Ni)对Ti(C,N)基金属陶瓷高温氧化和耐腐蚀性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(1): 27-36.
LIU Yi, ZHANG Meimei, KANG Xiyue, LIN Nan, YAN Yan, QIU Song, HUANG Jianhua, HE Yuehui. Effects of w(Co)/w(Ni) ratio on high-temperature oxidation and corrosion resistant behavior in Ti(C,N)-based cermets. Materials Science and Engineering of Powder Metallurgy, 2019, 24(1): 27-36.
[1] ETTMAYER P, KOLASKA H, LENGAUER W, et al.Ti(C,N) Cermets-metallurgy and properties[J]. Int J Refract Met Hard Mater, 1995, 13(6): 343-351. [2] MARI D, BOLGNINI S, FEUSIER G, et al.TiMoCN based cermets Part I. Morphology and phase composition[J]. Int J Refract Met Hard Metal, 2003, 21(1/2): 37-46. [3] WICK C.Cermet cutting tools[J]. Manuf Eng, 1987, 99(1): 35-40. [4] MANOJ KUMAR B V, BALASUBRAMANIAM R, BASU B. Electrochemical behavior of TiCN-Ni-based cermets[J]. J Am Ceram Soc, 2007, 90(1): 205-210. [5] WAN Weicai, XIONG Ji, YANG Mei, et al.Effects of Cr3C2 addition on the corrosion behavior of Ti(C,N)-based cermets[J]. Int J Refract Met Hard Mater, 2012, 31(6):179-186. [6] YI Chenghong, FAN Hongyuan, XIONG Ji, et al.Effect of WC content on the microstructures and corrosion behavior of Ti(C,N)-based cermets[J]. Ceram Int, 2013, 39(1): 503-509. [7] DONG Guangbiao, XIONG Ji, YANG Mei, et al.Effect of Mo2C on electrochemical corrosion behavior of Ti(C,N)-based cermets[J]. J Cent South Univ, 2013, 20(4): 851-858. [8] ZHANG Li, FENG Yuping, NAN Qing, et al.Effects of titanium-based raw materials on electrochemical behavior of Ti(C,N)-based cermets[J]. Int J Refract Met Hard Mater, 2015, 48(1): 11-18. [9] HUANG Bin, TANG Xianchen, CHEN Yanping, et al.High temperature oxidation behaviors of Ni3Al-bonded cermets[J]. J Alloy Comp, 2017, 704(5): 443-452. [10] ZHILA Memarrashidi, KEVIN. The influence of Ni3Al binder content on the aqueous corrosion response of TiC and Ti(C,N) cermets[J]. Int J Refract Met Hard Mater, 2017, 64(4): 113-121. [11] CHEN Shan, XIONG Weihao, YAO Zhenhua, et al.Corrosion behavior of Ti(C,N)-Ni/Cr cermets in H2SO4 solution[J]. Int J Refract Met Hard Mater, 2014, 47(12): 139-144. [12] DING Y, HUSSAIN T, MCCARTNEY D G.High-temperature oxidation of HVOF thermally sprayed NiCr-Cr3C2 coatings: microstructure and kinetics[J]. J Mater Sci, 2015, 50(20): 6808-6821. [13] ALVAREDO P, ABAJO C, TSIPAS S A et al. Influence of heat treatment on the high temperature oxidation mechanisms of an Fe-TiCN cermet[J]. J Alloy Comp, 2014, 591(5): 72-79. [14] 贺从训, 夏志华, 汪有明, 等. Ti(C,N)基金属陶瓷的研究[J]. 稀有金属, 1999, 23(1): 4-11. HE Congxun, XIA Zhihua, WANG Youming, et al.The research of Ti(C,N) based cermets[J]. Chinese Journal of Rare Metals, 1999, 23(1): 4-11. [15] 刘峰晓, 贺跃辉, 黄伯云, 等. Ti(C,N)基金属陶瓷的发展现状及趋势[J]. 粉末冶金技术, 2004, 22(4): 236-240. LIU Xiaofeng, HE Yuehui, HUANG Baiyun, et al.Development status and trend of Ti(C,N)-based cermets[J]. Powder Metallurgy Technology, 2004, 22(4): 236-240. [16] HAN Chengliang, KONG Mingguang.Fabrication and properties of TiC-based cermet with intra/intergranular microstructure[J]. Mater Des, 2009, 30(4): 1205-1208. [17] 吴晓光. JB/T7901—1999. 金属材料实验室均匀腐蚀全浸试验方法[S]. 重庆: 国家机械工业局, 1988. WU Xiaoguang.JB/T7901—1999. Metallic material laboratory uniform corrosion full immersion test method[S]. Chongqin: National Machinery Industry Bureau, 1988. [18] CÓRDOBA J M, CHICARDI E, GOTOR F J. Liquid-phase sintering of Ti(C,N)-based cermets, the effects of binder natureand content on the solubility and wettability of hard ceramic phases[J]. J Alloy Compd, 2013, 559(5): 34-38. [19] WAN Weicai, XIONG Ji, LIANG Mengxia.Effects of secondary carbides on the microstructure, mechanical properties and erosive wear of Ti(C,N)-based cermets[J]. Ceram Int, 2017, 43(1): 944-952. [20] WAN Weicai, XIONG Ji, GUO Zhixing, et al.Effects of Cr3C2 addition on the erosion-corrosion resistance of Ti(C,N)-based cermets in alkaline conditions[J]. Int J Refract Met Hard Mater, 2013, 64(3): 178-186 [21] DONG Guangbiao, XIONG Ji, YANG Mei. Effect of Mo2C on erosion-corrosion resistance behavior of Ti(C,N)-based cermets [J]. Wear, 2012, 294/295(3): 364-369.