Abstract:The electrode graphene/MnO2 nano-composites were obtained by depositing a layer of reduced graphene on the porous MnO2 nanoscale which was deposited firstly on the foamed nickel substrate by cyclic voltammetry. The morphology, phase and valence state of the material were analyzed by SEM, XRD and XPS. The specific capacitance, cyclic stability and resistance were characterized by the means of cyclic voltammogram, galvanostatic charge/discharge and electrochemical impedance spectrum. The results show that the MnO2 nanosheets are mostly coated by graphene. The equivalent series resistance and charge transfer resistance decrease form 0.83 Ω, 9.34 Ω to 0.4 Ω, 6.76 Ω, respeactivly. The specific capacitance of graphene/MnO2 composites at current density of 2 A/g is 501 F/g which has improved 25% compared to bare MnO2, and exhibit an 84% specific capacitance retention after 3 000 cycles.
邓高, 何捍卫. 电沉积法制备石墨烯/MnO2纳米复合电极的电容性能[J]. 粉末冶金材料科学与工程, 2018, 23(4): 398-406.
DENG Gao, HE Hanwei. Capacitive properties of graphene/MnO2 nano-composite electrode synthesized by electrodeposition. Materials Science and Engineering of Powder Metallurgy, 2018, 23(4): 398-406.
[1] 余丽丽, 朱俊杰, 赵景泰. 超级电容器的现状及发展趋势[J]. 自然杂志, 2015, 37(3): 188-196. YU Lili, ZHU Junjie, ZHAO Jingtai.The present situation and development trend of supercapacitors[J]. Journal of Nature, 2015, 37(3):188-196. [2] 潘登宇, 何捍卫, 周海生, 等. 活性炭孔分布对其电容衰减性能的影响[J]. 粉末冶金材料科学与工程, 2015,20(3): 478-485. PAN Dengyu, HE Hanwei, ZHOU Haisheng, et al.Pore distribution and its impact on capacity decay rate of activated carbon[J]. Material Science and Engineering of Powder, 2015, 20(3): 478-485. [3] YAN J, FANZ, WEI T, et al.Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon, 2010, 48(13): 3825-3833. [4] HOUZ X, LI G B, WANG S H, et al. Research progress of graphene-based composites in supercapacitor[J]. Chemistry, 2014, 989/994(19): 337-339. [5] ZHI M, XIANG C, LI J, et al.Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review[J]. Nanoscale, 2013, 5(1): 72. [6] XIONG C, LI T, KHAN M, et al.A three-dimensional MnO2/graphene hybrid as a binder-free supercapacitor electrode[J]. Rsc Advances, 2015, 5(104): 85613-85619. [7] 张竞赛. 石墨烯/MnO2基复合物的制备及电容性能的研究[D].天津: 天津大学, 2014. ZHANG Jingsai.Preparation and capacitance performance of graphene/MnO2 matrix composite[D]. Tianjin: University, 2014. [8] YU G, HU L, VOSGUERITCHAIAN M, et al.Solution- processed graphene/mno2 nanostructured textiles for high- performance electrochemical capacitors[J]. Nano Letters, 2011, 11(7): 2905. [9] WU S, CHEN W, YAN L.Fabrication of a 3D MnO2/graphene hydrogel for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(8): 2765-2772. [10] JAFTA C J, NKOSI F, ROUX L L, et al.Manganese oxide/ graphene oxide composites for high-energy aqueous asymmetric electrochemical capacitors[J]. Electrochimica Acta, 2013, 110(6): 228-233. [11] HU M, LIU Y, ZHANG M, et al.Wire-type MnO2/Multilayer graphene/Ni electrode for high-performance supercapacitors[J]. Journal of Power Sources, 2016, 335: 113-120. [12] LI Y, CAO D, WANG Y, et al.Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors[J]. Journal of Power Sources, 2015, 279(279): 138-145. [13] ZHAO H, LIU F, HAN G, et al.Co-electrodeposition of MnO2/graphene oxide coating on carbon paper from phosphate buffer and the capacitive properties[J]. Journal of Solid State Electrochemistry, 2014, 18(2): 553-559. [14] WU M S, LIN C J, HO C L.Multilayered architecture of graphene nanosheets and MnO2 nanowires as an electrode material for high-performance supercapacitors[J]. Electrochimica Acta, 2012, 81(11): 44-48. [15] CHENG Q, TANG J, MA J, et al.Graphene and nanostructured MnO2 composite electrodes for supercapacitors[J]. Carbon, 2011, 49(9): 2917-2925. [16] ZHU C, GUO S, FANG Y, et al.One-step electrochemical approach to the synthesis of Graphene/MnO2 nanowall hybrids[J]. Nanoresearch, 2011, 4(7): 648-657. [17] SHI J H, LI X C, HE G H, et al.Electrodeposition of high- capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(41): 20619-20626. [18] HUMMERS W S, OFFEMAN R E.Preparation of Graphitic Oxide. J Am Chem Soc 80:1339[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339. [19] 张全生, 党国举, 王淼, 等. 一种氧化石墨烯分散液的制备方法: 中国, CN103787317A[P].2014-05-14. ZHANG Q S, DANG G J, WANG N, et al. A proach to synthsis of grapehne oxide dispersion. CN103787317A[P].2014-05-14. [20] ZHANG L L, ZHAO X S.Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520. [21] SUN Y, FANG Z, WANG C, et al.Sandwich-structured nanohybrid paper based on controllable growth of nanostructured MnO2 on ionic liquid functionalized graphene paper as a flexible supercapacitor electrode[J]. Nanoscale, 2015, 7(17): 7790-7801. [22] GUO H L, WANG X F, QIAN Q Y, et al.A green approach to the synthesis of graphene nanosheets[J]. Acs Nano, 2009, 3(9): 2653-2659. [23] SIMON P, YURY G.Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854. [24] STOLLER M D, PARK S, ZHU Y, et al.Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498. [25] CHEN S, ZHU J, WU X, et al.Graphene oxide--MnO2 nanocomposites for supercapacitors[J]. ACS Nano, 2010, 4(5): 2822. [26] 乜广弟. 一维复合纳米结构的可控构筑及其超级电容器电极性能研究[D]. 长春: 吉林大学, 2017. NIE Guangdi.Controlled Fabrication of One-Dimensional Composite Nanostructures as Electrode Materials for Supercapacitors[D]. Changchun: Jilin University, 2017