Gas carburization and mechanical properties of radial composite tungsten alloy rods
LI Bo1, WANG Meng1, YANG Mingchuan1, LUO Rongmei1, WU Hailong1, DU Zhonghua1,2
1. College of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China; 2. College of Mechanical Engineering, Nanjing University of Science and Techology, Nanjing 210094, China
Abstract:The surface heat treatment of a radial composite tungsten alloy rod was carried out by gas carburization method, and a carburized layer with a certain thickness was obtained on the surface. The effects of carburizing temperature and time on the microstructure and mechanical properties of the alloy were studied by scanning electron microscopy, X-ray diffraction, nanoindentation, and room temperature static compression experiments. The results show that in the range of 1 150-1 250 ℃, with the increase of carburizing temperature and time, the thickness of carburized layer increases obviously, and WC phase is fully formed. When the carburizing temperature is 1 200 ℃ and the carburizing time is 3-5 h, the thickness of the carburized layer of the alloy can reach 70.5-94.1 μm, and the Vickers hardness reaches 599.6-1 128.6. After carburization the radial composite tungsten alloy rod maintains good compressive toughness during compression at room temperature. When the carburized layer is thick, the outer material W70Cu undergoes obvious shear failure.
李博, 王猛, 杨明川, 罗荣梅, 吴海龙, 杜忠华. 径向复合钨合金杆的气体渗碳及力学性能[J]. 粉末冶金材料科学与工程, 2024, 29(3): 201-209.
LI Bo, WANG Meng, YANG Mingchuan, LUO Rongmei, WU Hailong, DU Zhonghua. Gas carburization and mechanical properties of radial composite tungsten alloy rods. Materials Science and Engineering of Powder Metallurgy, 2024, 29(3): 201-209.
[1] ZHOU C, YI J, LUO S.Sintering high tungsten content W-Ni-Fe heavy alloys by microwave radiation[J]. Metallurgical and Materials Transactions A, 2014, 45: 455-463. [2] 周承商, 易健宏, 罗述东, 等. 微波烧结W-Ni-Fe高密度合金的变形现象及显微组织[J]. 粉末冶金材料科学与工程, 2010, 15(3): 300-304. ZHOU Chengshang, YI Jianhong, LUO Shudong, et al.Distortion and microstructure of microwave sintered W-Ni-Fe heavy alloys[J]. Materials Science and Engineering of Powder Metallurgy, 2010, 15(3): 300-304. [3] 吕政, 任学平, 卢成壮. 动能穿甲弹用钨合金绝热剪切带的研究进展[J]. 兵器材料科学与工程, 2014, 37(6): 134-140. LÜ Zheng, REN Xueping, LU Chengzhuang.Reasearch progress of adiabatic shear bands in tungsten heavy alloy for kinetic energy penetrators[J]. Ordnance Material Science and Engineering, 2014, 37(6): 134-140. [4] LUO R, HUANG D, YANG M, et al.Penetrating performance and “self-sharpening” behavior of fine-grained tungsten heavy alloy rod penetrators[J]. Materials Science and Engineering A, 2016, 675: 262-270. [5] 朱杰. 梯度结构钨基高密度合金的研究[D]. 长沙: 中南大学, 2013. ZHU Jie, Research on gradient structured tungsten based high-density alloys[D]. Changsha: Central South University, 2013. [6] BAEK W H, KIM E P, SONG H S, et al.Development of tungsten heavy alloy with hybrid structure for kinetic energy penetrator[C]//Materials Science Forum. Switzerland: Trans Tech Publications Ltd, 2007, 534: 1249-1252. [7] GUO W Q, WANG Y C, LIU K Y, et al.Effect of copper content on the dynamic compressive properties of fine-grained tungsten copper alloys[J]. Materials Science and Engineering A, 2018, 727: 140-147. [8] ZHANG Q, LIANG S, ZHUO L.Fabrication and properties of the W-30wt%Cu gradient composite with W@WC core-shell structure[J]. Journal of Alloys and Compounds, 2017, 708: 796-803. [9] 王玲, 李树奎, 宋修纲. 高密度钨合金的表面渗碳处理研究[J]. 兵工学报, 2007, 28(6): 730-732. WANG Ling, LI Shukui, SONG Xiugang.Research on surface carburization treatment of high density tungsten alloy[J]. Acta Armamentarii, 2007, 28(6): 730-732. [10] JUNG S W, KIM D K, LEE S, et al.Effect of surface carburization on dynamic deformation and fracture of tungsten heavy alloys[J]. Metallurgical and Materials Transactions A, 1999, 30(8): 2027-2035. [11] ALAM M E, ODETTE G R.On the influence of specimen size and geometry on the fracture toughness of tungsten heavy metal alloys[J]. Journal of Nuclear Materials, 2022, 571: 154025. [12] JETTER M, AKTAA J.Probabilistic analysis of cleavage fracture in commercial polycrystalline tungsten[J]. Journal of Nuclear Materials, 2022, 565: 153757. [13] PAN Y, XIONG H, LI Z, et al.Synthesis of WC-Co composite powders with two-step carbonization and sintering performance study[J]. International Journal of Refractory Metals and Hard Materials, 2019, 81: 127-136. [14] HU K, WANG G H, LI X Q, et al.Microstructure and formation mechanism in a surface carburized tungsten heavy alloy[J]. Journal of Alloys and Compounds, 2019, 787: 560-569. [15] WU H, CUI X, GENG L, et al.Fabrication and characterization of in-situ TiAl matrix composite with controlled microlaminated architecture based on SiC/Al and Ti system[J]. Intermetallics, 2013, 43: 8-15. [16] QIN Y, ZHUANG Y, WANG Y, et al.Enhanced mechanical and electrical properties of CuCrZr-WC alloy prepared by mechanical alloying and spark plasma sintering[J]. Fusion Engineering and Design, 2022, 180: 113166. [17] JUNG S, LEE S, KIM E P, et al.Control of surface carburization and improvement of dynamic fracture behavior in tungsten heavy alloys[J]. Metallurgical and Materials Transactions A, 2002, 33(4): 1213-1219. [18] CETINKAYA S, EROGLU S.Thermodynamic analysis and effect of temperature on surface hardening of tungsten heavy alloys using ethanol[J]. Journal of Alloys and Compounds, 2015, 632: 161-164. [19] WANG G, QU S, RUI L, et al.Effect of carburization on microstructure and rolling contact fatigue property of 95W-3.4Ni-1.6Fe heavy alloy[J]. Transactions of Nonferrous Metals Society of China, 2016, 12: 3161-3169. [20] SONG Y, KIM J H, KIM K S, et al.Effect of C2H2/H2 Gas mixture ratio in direct low-temperature vacuum carburization[J]. Metals, 2018, 8(7): 493. [21] 李佳, 闫晓东, 杨银, 等. Ta 及 Ta-W 合金真空渗碳工艺研究[J]. 稀有金属, 2018, 42(9): 925-930. LI Jia, YAN Xiaodong, YANG Yin, et al.Research on vacuum carburization process of Ta and Ta-W alloy[J]. Chinese Journal of Rare Metals, 2018, 42(9): 925-930. [22] ZHANG Q, YANG J Y, DENG N, et al.Effect of carburized time on microstructure and properties of WCu composites fabricated by vacuum pulse carburization[J]. International Journal of Refractory Metals and Hard Materials, 2023, 112: 106168. [23] 钟远辉. 钨铜合金材料的研究进展及应用[J]. 冶金与材料, 2023, 43(1): 151-153. ZHONG Yuanhui.Research progress and application of tungsten copper alloy materials[J]. Metallurgy and Materials, 2023, 43(1): 151-153. [24] WANG Y, ZHUO L, YIN E.Progress, challenges and potentials/trends of tungsten-copper (WCu) composites/pseudo-alloys: fabrication, regulation and application[J]. International Journal of Refractory Metals and Hard Materials, 2021, 100: 105648. [25] 阙吴梅, 黄友庭, 陈文哲. 梯度结构铜钨基碳化物复合材料的制备及其高温压缩性能[J]. 机械工程材料, 2017, 41(7): 54-59. QUE Wumei, HUANG Youting, CHEN Wenzhe.Preparation and high-temperature compression performance of gradient structured copper tungsten based carbide composite materials[J]. Mechanical Engineering Materials, 2017, 41(7): 54-59. [26] DONG L L, AHANGARKANI M, ZHANG W, et al.Formation of gradient microstructure and mechanical properties of hot-pressed W-20 wt% Cu composites after sliding friction severe deformation[J]. Materials Characterization, 2018, 144: 325-335. [27] ZHOU L, WANG H, LUO B, et al.Insight into the microstructure and tensile behavior of the W-Cu composite reinforced with tungsten fibers and particulates[J]. Advanced Engineering Materials, 2020, 22(11): 2000502.