Abstract:The hot deformation behavior of Al-Cu-Mg-Mn-Sc-Zr aluminium alloy is a basis for formulating deformation processing technology. The isothermal compression simulation experiment was carried out on the homogenized Al-Cu-Mg-Mn-Sc-Zr aluminium alloy by Gleeble-3500 system under temperature of 633-753 K and strain rate of 0.01-10 s-1, the true strain-true stress curves were obtained, and deformation activation energy was calculated, and processing map was built-up. The results show that flow stress decreases and the softening mechanism changes from dynamic recovery to dynamic recrystallization with the increase of deformation temperature or the decrease of strain rate. The precipitates in the deformed alloy pin dislocation slip and grain boundary migration, and hinder recrystallization. The activation energy is 153.5 kJ/mol. 633-663 K, 0.01-0.07 s-1 and 693-723 K, 0.01-0.1 s-1 are the best deformation regions.
周旭, 刘祖铭, 黄兰萍, 艾永康, 曹镔, 叶书鹏. Al-Cu-Mg-Mn-Sc-Zr铝合金的流变行为与热加工图[J]. 粉末冶金材料科学与工程, 2021, 26(4): 372-380.
ZHOU Xu, LIU Zuming, HUANG Lanping, AI Yongkang, CAO Bin, YE Shupeng. Hot deformation behavior and processing map of Al-Cu-Mg-Mn-Sc-Zr aluminium alloy. Materials Science and Engineering of Powder Metallurgy, 2021, 26(4): 372-380.
[1] DURSUN T, SOUTIS C.Recent developments in advanced aircraft aluminium alloys[J]. Materials and Design, 2014, 56(4): 862-871. [2] GEORGANTZIA E, GKANTOU M, KAMARIS G S.Aluminium alloys as structural material: A review of research[J]. Engineering Structures, 2021, 227(21): 111372. [3] 邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29(9): 2115-2141. DENG Yunlai, ZHANG Xinming.Development of aluminium and aluminium alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2115-2141. [4] SHARMA P, DWIVEDI S P, DABRA V, et al.Metallurgical and mechanical description of AA2014/Al2O3 reinforced composites[J]. Materials Today: Proceedings, 2020, 25(4): 942-945. [5] BHARATH V, AJAWAN S S, NAGARAL M, et al.Characterization and mechanical properties of 2014 aluminum alloy reinforced with Al2O3p composite produced by two-stage stir casting route[J]. Journal of the Institution of Engineers: Series C, 2018, 100(2): 277-282. [6] VENKATACHALAM P, RAMESH KUMAR S, RAVISANKAR B, et al.Effect of processing routes on microstructure and mechanical properties of 2014 Al alloy processed by equal channel angular pressing[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(10): 1822-1828. [7] 肖代红, 吴名冬, 余永新. 微量Sc对2A14铝合金轮毂组织与性能的影响[J]. 特种铸造及有色合金, 2020, 40(1): 26-29. XIAO Daihong, WU Mingdong, YU Yongxin.Effects of minor Sc addition on microstructure and mechanical properties of 2A14 aluminum alloy wheel hubs[J]. Special Casting and Nonferrous Alloys, 2020, 40(1): 26-29. [8] 陈送义, 陈绍煊, 李际宇, 等. 预冷变形对2A14铝合金锻件时效析出相和性能的影响[J]. 材料热处理学报, 2020, 41(12): 57-64. CHEN Songyi, CHEN Shaoxuan, LI Jiyu, et al.Effect of pre- cold deformation on aging precipitated phase and properties of 2A14 aluminum alloy forgings[J]. Transactions of Materials and Heat Treatment, 2020, 41(12): 57-64. [9] 刘文胜,郭伦文,马运柱,等. 2A14铝合金热变形的显微组织及流变行为[J]. 中国有色金属学报,2013,23(8):2091-2097. LIU Wensheng, GUO Lunwen, MA Yunzhu, et al.Microstructure and flow behavior of 2A14 aluminum alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(8): 2091-2097. [10] 孙梦黎, 李姚君, 丁佐军, 等. 2A14铝合金的动态再结晶模型及热变形组织演变[J]. 金属热处理, 2018, 43(4): 19-23. SUN Mengli, LI Yaojun, DING Zuojun, et al.Dynamic recrystallization model and microstructure evolution of 2A14 aluminum alloy under hot deformation[J]. Heat Treatment of Metals, 2018, 43(4): 19-23. [11] LI P W, LI H Z, HUANG L, et al.Characterization of hot deformation behavior of AA2014 forging aluminum alloy using processing map[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(8): 1677-1688. [12] NATH VERMA T, BANERJEE M, NASHINE P.Hot compression test of AA 2014 aluminum alloy with microstructure analysis and processing maps[J]. Materials Today: Proceedings, 2018, 5(2): 7247-7255. [13] ZHANG H, JIN N P, CHEN J H.Hot deformation behavior of Al-Zn-Mg-Cu-Zr aluminum alloys during compression at elevated temperature[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(6): 437-442. [14] 范曦, 潘清林, 李建湘. Al-Mn-Mg-Cu-Ni合金热压缩变形的流变行为和组织[J]. 中国有色金属学报, 2010, 20(3): 420-426. FAN Xi, PAN Qinglin, LI Jianxiang, et al.Flow behavior and microstructure of Al-Mn-Mg-Cu-Ni alloy during hot compression deformation[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(3): 420-426. [15] DAI Q S, DENG Y L, TANG J G, et al.Deformation characteristics and strain-compensated constitutive equation for AA5083 aluminum alloy under hot compression[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(11): 2252-2261. [16] 戚延龄, 夏长清, 王志辉, 等. Ti62421s 钛合金的热变形行为及加工图[J]. 中南大学学报(自然科学版), 2012, 43(5): 1662-1670. QI Yanling, XIA Changqing, WANG Zhihui,et al.Deformation behavior and processing map of high temperature deformation of Ti62421s alloy[J]. Journal of Central South University (Science and Technology), 2012, 43(5): 1662-1670. [17] CAI Z W, CHEN F X, MA F J, et al.Dynamic recrystallization behavior and hot workability of AZ41M magnesium alloy during hot deformation[J]. Journal of Alloys and Compounds, 2016, 670(15): 55-63. [18] LUO J, LI M Q, MA D W.The deformation behavior and processing maps in the isothermal compression of 7A09 aluminum alloy[J]. Materials Science and Engineering A, 2012, 532(15): 548-557. [19] 党小荔, 杨伏良. Al1.03Mg1.00Si0.04Cu铝合金热压缩变形及其加工图[J]. 中南大学学报(自然科学版), 2012, 43(11): 4234-4241. DANG Xiaoli, YANG Fuliang.Hot compression deformation and processing maps of Al1.03Mg1.00Si0.04Cu aluminum alloy[J]. Journal of Central South University (Science and Technology), 2012, 43(11): 4234-4241.