Thermodynamic and thermal analysis on carbothermal reduction-carbonization of titanium and tungsten oxides
LIANG Yan1, ZHANG Li1, LI Xia2, YU Peng2, LIU Tao1, LING Qun1
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract:HSC Chemistry thermodynamic analysis software, thermo-gravimetric and differential scanning calorimetric methods were used to analyze the evolution process of the reduction and carbonization of TiO2 and WO2.72 by carbon under the condition of an inert atmosphere. The results show that due to the increased reaction activity of the raw materials by ball-milling and the existence of gas-solid synergetic reaction, the actual reaction temperature is lower than the one of the thermodynamic calculation result. As the temperature increases, TiO2 and WO2.72 are gradually reduced and carbonized in the order of TiO2→Ti4O7→Ti3O5→Ti2O3→TiO→TiC and WO2.72→WO2→W→W2C→WC, respectively. The final reaction temperature is suggested to be above 1400 °C to speed up the kinetic process of the reaction.
[1] 龚涤凡, 李詠侠, 杨海林, 等. 纳米SiC对Ti(C,N)基金属陶瓷微观组织与性能的影响[J]. 粉末冶金材料科学与工程, 2020, 25(4): 321-329. GONG Difan, LI Yongxia, YANG Hailin, et al.Nano-SiC addition on microstructure, mechanical properties and high temperature oxidation resistance of Ti(C,N)-based cermets[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(4): 321-329. [2] 蔺绍江, 陈肖, 熊惟皓. Ti(C0.7N0.3)对(Ti,W,Ta)C-Mo-Ni系金属陶瓷组织与性能的影响[J]. 粉末冶金材料科学与工程, 2020, 25(1): 11-15. LIN Shaojiang, CHEN Xiao, XIONG Weihao.Effects of Ti(C0.7N0.3) addition on the microstructure and properties of (Ti,W,Ta)C-Mo-Ni cermets[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(1): 11-15. [3] 崔焱茗, 张立, 黄龙, 等. 原料中C/N原子比对TiCN基金属陶瓷组织结构和性能的影响[J]. 粉末冶金材料科学与工程, 2020, 25(1): 58-64. CUI Yanming, ZHANG Li, HUANG Long, et al.Effects of C/N atomic ratio in raw materials on the microstructure and properties of Ti(C,N)-based cermets[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(1): 58-64. [4] 肖桥平, 张立, 罗国凯, 等. 无金属粘结相 TiCN 基金属陶瓷在 NaOH 溶液中的电化学腐蚀行为[J]. 粉末冶金材料科学与工程, 2019, 24(2): 120-128. XIAO Qiaoping, ZHANG Li, LUO Guokai, et al.Electrochemical corrosion behavior of binderless TiCN-based cermets in NaOH solution[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(2): 120-128. [5] HUI Y, YING D, YONG YS, et al.Ti(C,N)-based cermets with two kinds of core-rim structures constructed by β-Co microspheres[J]. Advances in Materials Science and Engineering, 2020(2): 1-11. [6] LI P, YE J, LIU Y, et al.Study on the formation of core/rim structure in Ti(CN)-based cermets[J]. International Journal of Refractory Metals and Hard Materials, 2012, 35(11): 27-31. [7] PARK C, NAM S, KANG S, et al.Carbide/binder interfaces in Ti(CN)-(Ti,W)C/(Ti,W)(CN)-based cermets[J]. Journal of Alloys and Compounds, 2016, 657: 671-677. [8] 张国鹏. (Ti,M)C基金属陶瓷的制备、组织与性能研究[D]. 武汉: 华中科技大学, 2014. ZHANG Guopeng.The Research on the preparation, microstructure and mechanical properties of (Ti,M)C-based cermets[D]. Wuhan: Huazhong University of Science and Technology, 2014. [9] 庞立娟, 邓刚, 张雪峰, 等. (Ti,M)C复式碳化物制备方法的研究进展[J]. 粉末冶金工业, 2017, 27(3): 57-62. PANG Lijuan, DENG Gang, ZHANG Xuefeng, et al.Research progress on preparation of (Ti,M)C composite carbides[J]. Powder Metallurgy Industry, 2017, 27(3): 57-62. [10] KWON H, JUNG S A, SUH C Y, et al.Mechanical properties of (TixW1-x)C-Co cermet prepared by carbothermal reduction of high energy ball milled TiO2-WO3-C[J]. Ceramics International, 2016, 43(2): 1943-1947. [11] 郑启文, 杨天恩, 熊计. (Ti,W)C固溶体基金属陶瓷的研究进展[J]. 硬质合金, 2017, 34(1): 61-74. ZHENG Qiwen, YANG Tianen, XIONG Ji.Research and development of (Ti,W)C-based cermets[J]. Cemented Carbide, 2017, 34(1): 61-74. [12] 方民宪, 陈厚生. 碳热还原法制取Ti(C,N)的热力学原理[J]. 粉末冶金材料科学与工程, 2006, 11(6): 329-329. FANG Minxian, CHEN Housheng.Thermodynamic principle of preparing Ti(C,N) by carbon-heat reducing[J]. Materials Science and Engineering of Powder Metallurgy, 2006, 11(6): 329-329. [13] PAN F, DU Z, LI S F, et al.Preparation of nano-sized tungsten carbide via fluidized bed[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 306-315. [14] WU K H, JIANG Y, JIAO S Q, et al.Preparations of titanium nitride, titanium carbonitride and titanium carbide via a two-step carbothermic reduction method[J]. Journal of Solid State Chemistry, 2019, 277: 793-803. [15] 丁伟民, 郑勇, 王守文, 等. 原位碳热还原法制备Ti(C,N)基金属陶瓷的烧结技术研究[J]. 硬质合金, 2018, 35(4): 227-234. DING Weimin, ZHENG Yong, WANG Shouwen, et al.Research on sintering process of Ti(C,N)-based cermets prepared by in situ carbothermal reduction method[J]. Cemented Carbide, 2018, 35(4): 227-234. [16] SEN W, XU B Q, YANG B, et al.Preparation of TiC powders by carbothermal reduction method in vacuum[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 185-190. [17] 杨高玲. Co诱导可控制备超细WC粉体及其调控机理研究[D].赣州: 江西理工大学, 2019. YANG Gaoling.Controllable preparation of ultrafine WC powder induced by Co and its regulation mechanism[D]. Ganzhou: Jiangxi University of Science and Technology, 2019. [18] WANG K F, TANG X L, JIAO S Q, et al.A short and facile process to synthesize WC-Co cemented carbides[J]. International Journal of Refractory Metals and Hard Materials, 2020, 92: 105288. [19] PAN F, DU Z, LI S F, et al.Preparation of nano-sized tungsten carbide via fluidized bed[J]. Chinese Journal of Chemical Engineering, 2019, 28(3): 306-315. [20] 吴爱华, 唐建成, 叶楠, 等. 微波碳化法制备纳米WC粉末及其机理[J]. 粉末冶金材料科学与工程, 2014,19(6): 862-866. WU Aihua, TANG Jiancheng, YE Nan, et al.Fabrication and mechanism of WC nano-powders prepared by microwave carbonization[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(6): 862-866. [21] KWON H, KIM W, KIM J.Stability domains of (Ti,W)C and (Ti,W)(CN) during carbothermal reduction of TiO2/WO3 mixture at 1 500 K[J]. Journal of the European Ceramic Society, 2017, 37: 1355-1371. [22] 王耀奇, 任学平, 侯红亮, 等. 氢化钛氧化处理及其热分解行为[J]. 粉末冶金材料科学与工程, 2015, 20(1): 1-6. WANG Yaoqi, REN Xueping, HOU Hongliang, et al.Oxidation treatment and hot decomposition behavior of titanium hydride[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(1): 1-6. [23] 张立, 吴冲浒, 王振波, 等. 硬质合金常用模压成形剂的热分解特性[J]. 粉末冶金材料科学与工程, 2010, 15(6): 674-678. ZHANG Li, WU Chonghu, WANG Zhenbo, et al.Thermal dissociation characteristics of the binders for compression molding of cemented carbides[J]. Materials Science and Engineering of Powder Metallurgy, 2010, 15(6): 674-678. [24] REZAN S A, ZHANG G Q, OSTROVSKI O.Effect of gas atmosphere on carbothermal reduction and nitridation of titanium dioxide[J]. Metallurgical and Materials Transactions B, 2011, 43(1): 73-81.