Effect of calcining process of APT on growth mechanisms of WO2.72 crystals
LONG Benfu1, LIN Gaoan1, ZHANG Taiquan2, SHEN Siqi1
1. Xiamen Golden Egret Special Alloy Co., Ltd., Xiamen 361021, China; 2. China National R&D Center for Tungsten Technology, Xiamen Tungsten Co., Ltd.,Technology Center, Xiamen 361009, China
Abstract:WO2.72 powder was prepared by calcining APT powder at various temperatures and holding time in an industrial rotary furnace. The results indicate that the single-phase WO2.72 powder can be obtained above 800 ℃. The morphology and size of WO2.72 grains are strongly affected by calcining temperature, and the morphology changes from long-needle-like to short coarse rod-like at about 770-800 ℃ with increasing temperature. For long needle-like grains, with increasing temperature, their diameters increase slightly, but their lengths increase sharply. The growth mechanism is that monocrystalline grains nucleate grow into APT particles, accompanying by a small amount of WOx·nH2O vapor deposition-re-reduction on the surface of APT particles. For short coarse rod-like grains, with increasing temperature, an opposite result is obtained. The growth mechanism is that the multiple grains clustery nucleate and grow into APT particles to form rod-like grains. With increasing holding time, there is no obvious change in the morphology of WO2.72 grains, and their diameter and length increase slightly.
龙本夫, 林高安, 张太全, 沈思奇. APT煅烧工艺对WO2.72晶体生长机制的影响[J]. 粉末冶金材料科学与工程, 2021, 26(1): 32-39.
LONG Benfu, LIN Gaoan, ZHANG Taiquan, SHEN Siqi. Effect of calcining process of APT on growth mechanisms of WO2.72 crystals. Materials Science and Engineering of Powder Metallurgy, 2021, 26(1): 32-39.
[1] 宋翰林, 姜平国, 刘文杰, 等. 氧化钨氢还原动力学的研究进展[J]. 有色金属科学与工程, 2017, 8(5): 64-69. SONG Hanlin, JIANG Pingguo, LIU Wenjie, et al.Research progress on hydrogen reduction kinetics of tungsten oxide[J]. Nonferrous Metals Science and Engineering, 2017, 8(5): 64-69. [2] ŞENOL Ç.Reduction behavior of nanocrystalline WO3 powder in H2 atmosphere[J]. Afyon Kocatepe University Journal of Science and Engineering, 2017, 17: 669-674. [3] WU X W, LUO J S, LU B Z, et al.Crystal growth of tungsten during hydrogen reduction of tungsten oxide at high temperature[J]. Transactions of Nonferrous Metals Society of China, 2009, 19: s785-s789. [4] 陈丽杰, 田磊, 徐志峰, 等. 不同氧含量的氧化钨粉对超细钨粉制备的影响[J]. 有色金属, 2018, 6: 61-66. CHEN Lijie, TIAN Lei, XU Zhifeng, et al.Effect of tungsten oxide with different oxygen content on preparation of ultrafine tungsten powder[J]. Nonferrous Metals, 2018, 6: 61-66. [5] WU C H.Ultrafine tungsten powders in-situ reduction nano- needle violet tungsten oxide[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(6): 686-691. [6] WU C H, WU Q S, WEN X, et al. Preparation method of industrial purple nano-needle tungsten oxide: US, US2014/ 0014875[P].2014-01-16. [7] 谢中华, 汪壮瀚, 余春荣, 等. 一种高纯均相针状紫钨粉末的制备方法: 中国, CN109622989A[P].2019-04-16. XIE Zhonghua, WANG Zhuanghan, YU Chunrong, et al. Preparation method of high purity homogeneous acicular violet tungsten powder: China, CN109622989[P].2019-04-16. [8] PFEIFER J, BADALJAN E, TEKULA-BUXBAUM P, et al.Growth and morphology of W18O49 crystals produced by microwave decomposition of ammonium paratungstate[J]. Journal of Crystal Growth, 1996, 169(4): 727-733. [9] 黄继武, 李周. 多晶材料X射线衍射—实验原理, 方法与应用[M]. 北京: 冶金工业出版社, 2012. HUANG Jiwu, LI Zhou.Polycrystalline Materials X-ray Diffraction Experimental Principle, Method and Application[M]. Beijing: Metallurgical Industry Press, 2012. [10] 刘梅丽. 蓝色氧化钨中氨含量的测定[J]. 中国钨业, 1995, 6: 28-29. LIU Meili.Determination of NH3 content in blue tungsten oxide[J]. China Tungsten Industry, 1995, 6: 28-29. [11] 苏玉蕾, 王少波, 宋刚祥, 等. 氨分解制氢催化剂研究进展[J]. 舰船科学技术, 2010, 32(4): 138-143. SU Yulei, WANG Shaobo, SONG Gangxiang, et al.Development in catalysts for hydrogen production by ammonia decomposition[J]. Ship Science and Technology, 2010, 32(4): 138-143. [12] HASHIMOTO H, TANAKA K, YODA E.Growth and evaporation of tungsten oxide crystals[J]. Journal of Physical Society of Japan, 1960, 15(6): 1006-1014. [13] KUMAO A, FUJITA Y, ENDOH H.Growth of dendritic and needle tungsten oxide crystals studied by high-resolution electron microscopy[J]. Ultramicroscopy, 1994, 54(2/4): 201-206. [14] 石玉斌. W18O49微纳米晶须/线的制备及其生长机理研究[D]. 长沙: 中南大学, 2012: 33-43. SHI Yubin.Preparation and growth mechanism of W18O49 micro/nanosized whiskers/wires[D]. Changsha: Central South University, 2012: 33-43. [15] 党丁盈, 刘新利, 伍镭, 等. W/WO2.72一维纳米异质结构的合成及生长机理[J]. 粉末冶金材料科学与工程, 2013, 18(5): 627-630. DANG Dingying, LIU Xinli, WU Lei, et al.Synthesis and growth mechanism of one-dimensional nano W/WO2.72 heterostructures[J]. Materials Science and Engineering of Powder Metallurgy, 2013, 18(5): 627-630. [16] SRIVASTAV A K, BASU J, KASHYAP S, et al.Crystallographic-shear-phase-driven W18O49 nanowires growth on nanocrystalline W surfaces[J]. Scripta Materialia, 2016, 115: 28-32. [17] HARBNER R, SCHUBERT W D, LASSNER E, et al.Mechanism of technical reduction of tungsten, Part 2: Hydrogen reduction of tungsten blue oxide to tungsten powder[J]. High- Frequency Ultrasound, 1983, 2(4): 156-163. [18] 刘新利, 张泉, 王世良, 等. W18O49亚微米棒阵列的制备及其生长机理[J]. 中国有色金属学报, 2011, 21(5): 1093-1098. LIU Xinli, ZHANG Quan, WANG Shiliang, et al.Synthesis and growth mechanism of W18O49 submicron-rod arrays[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(5): 1093-1098.