Effects of ball milling time on microstructure and properties of NbMoTaWVCr refractory high entropy alloy
PENG Haiyan1,2, KANG Zhixin2,3, LI Xiaozhen2, ZHOU Li1, LONG Yan2,3
1. School of Mechatronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510635, China; 2. Guangdong Key Laboratory for Advanced Metallic Materials, South China University of Technology, Guangzhou 510640, China; 3. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
Abstract:Refractory NbMoTaWVCr high entropy alloy (HEA) was fabricated by combination of mechanically alloying (MA) and spark plasma sintering (SPS) using powders of Nb, Mo, Ta, W and V as raw materials. The effects of milling time on phase composition, microstructure evolution and mechanical properties were investigated. The results show that mechanical alloying can be achieved after 40 h ball milling, and the single-phase BCC NbMoTaWVCr high entropy alloy powder is obtained. With the increase of milling time, the grain size is refined and the micro strain increases.The bulk alloy sintered by SPS at 1 500 ℃ consists of BCC matrix, Laves phase and oxide phase. The content of precipitated phase increases with the increase of milling time. With the increase of milling time, the compressive yield strength increases first and then decreases and the plasticity decreases gradually. The NbMoTaWVCr refractory high entropy alloy sintered from powders milled for 40 h exhibits an excellent yield strength of 3416 MPa and plastic strain of 5.3%.
彭海燕, 康志新, 李小珍, 周莉, 龙雁. 球磨时间对NbMoTaWVCr难熔高熵合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2020, 25(6): 513-519.
PENG Haiyan, KANG Zhixin, LI Xiaozhen, ZHOU Li, LONG Yan. Effects of ball milling time on microstructure and properties of NbMoTaWVCr refractory high entropy alloy. Materials Science and Engineering of Powder Metallurgy, 2020, 25(6): 513-519.
[1] YEH J W, CHEN S K, LIN S J, et al.Nanostructured high- entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2] MIRACLE D B, SENKOV O N.A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511. [3] GAO M C, YEH J W, LIAW P K, et al.High-Entropy Alloys[M]. New York: Springer Science & Business Media, 2016. [4] 王江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能[J]. 材料研究学报, 2016, 30(8): 609-613. WANG Jiang, HUANG Weigang. Microstructure andproperties of CrMoVNbFex high entropy alloys[J]. Chineses Journal of Materials Research, 2016, 30(8): 609-613. [5] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al.A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158. [6] CHOU Y L, YEH J W, SHIH H C.The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J]. Corrosion Science, 2010, 52(8): 2571-2581. [7] CHEN Y Y, DUVAL T, HUNG U D, et al.Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel[J]. Corrosion Science, 2005, 47(9): 2257-2279. [8] CHUANG M, TSAI M, WANG W, et al.Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys[J]. Acta Materialia, 2011, 59(16): 6308-6317. GORR B, AZIM M, CHRIST H J, et al. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys[J]. Journal of Alloys and Compounds, 2015, 624: 270-278. [9] ZHANG Y, ZUO T T, TANG Z, et al.Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1-93. [10] YEH J W, CHEN S K, GAN J Y, et al.Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements[J]. Metallurgical and Materials Transactions A, 2004, 35(8): 2533-2536. [11] SENKOV O N, WILKS G B, MIRACLE D B, et al.Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9): 1758-1765. [12] SENKOV O N, WILKS G B, SCOTT J M, et al.Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706. [13] SENKOV O N, SCOTT J M, SENKOVA S V, et al.Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. Journal of Alloys and Compounds, 2011, 509(20): 6043-6048. [14] WANG S, XU J.TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties[J]. Materials Science and Engineering C, 2017, 73: 80-89. [15] YURCHENKO N Y, STEPANOV N D, ZHEREBTSOV S V, et al.Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx(x=0~1.5) high-entropy alloys[J]. Materials Science and Engineering A, 2017, 704: 82-90. [16] CHEN W, FU Z, FANG S, et al.Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy[J]. Materials & Design, 2013, 51: 854-860. [17] FU Z, CHEN W, CHEN Z, et al.Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy[J]. Materials Science and Engineering A, 2014, 619: 137-145. [18] WANG P, CAI H, ZHOU S, et al.Processing, microstructure and properties of Ni1.5CoCuFeCr0.5-xVx high entropy alloys with carbon introduced from process control agent[J]. Journal of Alloys and Compounds, 2017, 695: 462-475. [19] SATHIYAMOORTHI P, BASU J, KASHYAP S, et al.Thermal stability and grain boundary strengthening in ultrafine-grained CoCrFeNi high entropy alloy composite[J]. Materials & Design, 2017, 134: 426-433. [20] CHEN Y, HU Y, HSIEH C, et al.Competition between elements during mechanical alloying in an octonary multi-principal- element alloy system[J]. Journal of Alloys and Compounds, 2009, 481(1/2): 768-775. [21] SURYANARAYANA C.Mechanical alloying and milling[J]. Progress in Materials Science, 2001, 46(1/2): 1-184. [22] WU B, CHEN W, JIANG Z, et al.Influence of Ti additionon microstructure and mechanical behavior of a FCC-based Fe30Ni30Co30Mn10 alloy[J]. Materials Science & Engineering A, 2016, 676: 492-500. [23] 鲁世强, 黄伯云, 贺跃辉. 机械合金化对Laves相Cr2Nb固相热反应合成的影响[J]. 航空学报. 2003(6): 568-572. LU Shiqiang, HUANG Baiyun, HE Yuehui. The effect of mechanical alloying on synthesizing of Laves Cr2Nb by solid thermal reachion[J]. Acta Aeronautica & Astronautica Sinica, 2003(6): 568-572. [24] MURTY B S, RANGANATHAN S.Novel materials synthesis by mechanical alloying/milling[J]. International Materials Reviews, 1998, 43(3): 101-141. [25] PRAVEEN S, BASU J, KASHYAP S, et al.Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures[J]. Journal of Alloys and Compounds, 2016, 662: 361-367. [26] PRAVEEN S, MURTY B S, KOTTADA R S.Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during sparkplasma sintering[J]. JOM, 2013, 65(12): 1797-1804. [27] PRAVEEN S, MURTY B S, KOTTADA R S.Effect of molybdenum and niobium on the phase formation and hardness of nanocrystalline CoCrFeNi high entropy alloys[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(10): 8106-8109. [28] LONG Y, SU K, ZHANG J F, et al.Enhanced strength of a mechanical alloyed NbMoTaWVTi refractory high entropy alloy[J]. Materials, 2018, 11(5): 669-676. [29] FU Z Q, HOFFMAN A, MACDONALD B E, et al.Atom probe tomography study of an Fe25Ni25Co25Ti15Al10 high-entropy alloy fabricated by powder metallurgy[J]. Acta Materialia, 2019, 179: 372-382. [30] SENKOV O N, JENSEN J K, PILCHAK A L, et al.Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr[J]. Materials and Design, 2018, 139: 498-511. [31] GE S F, FU H M, ZHANG L, et al.Effects of Al addition on the microstructures and properties of MoNbTaTiV refractory high entropy alloy[J]. Materials Science & Engineering A, 2020, 784: 139-275. [32] SENKOV O N, ZHANG C, PILCHAK A L, et al.CAPLHAD- aided development of quaternary multi-principal element refractory alloys based on NbTiZr[J]. Journal of Alloys and Compounds, 2019, 783: 729-742. [33] SENKOV O N, ISHEIM D, SEIDMAND N, et al.Development of a refractory high entropy superalloy[J]. Entropy, 2016, 18(102): 1-13. [34] LIU Y, ZHANG Y, ZHANG H, et al.Microstructures and mechanical properties of refractory HfMo0.5NbTiV0.5Six high- entropy composites[J]. Journal of Alloys and Compounds. 2017, 694: 869-876.