Friction and wear properties of PM Zn-W alloy reinforcing copper-based friction material for mining truck clutches
XIE Maoqing1,2, WANG Leigang1, PENG Peng3, YANG Guosheng3, ZHANG Jiahao4
1. School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; 2. Zhejiang Tieliu Clutch Co., Ltd., Hangzhou 311101, China; 3. Nantong Wanda Friction Material Co., Ltd., Nantong 226611, China; 4. School of electrical and Automation Engineering, Hefei University of Technology, Hefei 230009, China
Abstract:The copper baseed friction materials for mine truck clutch were prepared by adding Zn-W alloy into the existing copper base powder metallurgy friction material formulation, with different Zn-W alloy content and different pressing density. The microstructure and friction and wear properties of the materials were analyzed and tested, and the incremental energy/power level test and bench test were carried out. The results show that the surface hardness of Cu based friction materials decreases with the increase of Zn-W alloy content and increases with the increase of density. The friction coefficient increases with the increase of Zn-W alloy content and decreases with the increase of density. The copper based friction plate with mass fraction of 6%Zn-W alloy and 10% higher density has suitable surface hardness, dynamic/static friction coefficient and good wear resistance, and can reduce the noise, vibration and acoustic vibration roughness of automobile. Compared with the friction plate without Zn-W alloy, the energy output of the friction plate can be increased by two levels, and the sixth level energy output (753.16 J/cm2) can be sustained. The main performance of the friction plate is slightly higher than that of the imported copper based friction plate.
[1] LOCKER K D.Friction material-An overview[J]. Powder Metallurgy, 2002, 35(4): 253-255. [2] KUSE T.Development of new friction material for heavy duty application[J]. Sae Technical Paper Series, 1994, 103: 204-214. [3] 王延忠, 魏彬, 宁克焱, 等. 铜基粉末冶金摩擦材料调速制动摩擦系数试验[J]. 哈尔滨工业大学学报, 2014, 46(1): 116-120. WANG Yanzhong, WEI Bin, NING Keyan, et al. Friction coefficient speed-control experiment of Cu-based wet sintered friction material[J]. Journal of Harbin Institute of Technology, 2014, 46(1): 116-120. [4] WILLERMET P A. 摩擦学在传动中的应用[J]. 传动技术, 2000(2): 37-41. WILLERMET P A. Topics in transmission tribology[J]. Drive System Technique, 2000(2): 37-41. [5] 李世鹏, 熊翔, 姚萍屏, 等. 石墨、SiO2在铜基粉末冶金摩擦材料基体中的摩擦学行为研究[J]. 非金属矿, 2003, 21(6): 51-53. LI Shipeng, XIONG Xiang, YAO Pingping, et al. Study on friction and wear behaviors of graphite and SiO2 in matrix of Cu-based friction material[J]. Non-Metallic Mines, 2003, 26(6): 51-53. [6] 刘超, 姚萍屏, 周海滨, 等. ZrO2晶型对铜基粉末冶金摩擦材料摩擦学性能的影响[J]. 润滑与密封, 2009, 44(2): 6-13. LIU Chao, YAO Pingping, ZHOU Haibin, et al. Effect of crystal structures of ZrO2 on tribological properties of copper-based powder metallurgy friction materials[J]. Lubrication Engineering, 2019, 44(2): 6-13. [7] 姚萍屏, 肖叶龙, 张忠义, 等. 高速列车粉末冶金制动材料的研究进展[J]. 中国材料进展, 2019, 38(2): 116-125. YAO Pingping, XIAO Yelong, ZHANG Zhongyi, et al. Progress in powder metallurgical brake materials for high-speed trains[J]. Materials China, 2019, 38(2): 116-125. [8] 周宇清, 张兆森, 袁国洲. 模拟空间状态下的粉末冶金摩擦材料性能[J]. 粉末冶金材料科学与工程, 2005, 10(1): 50-54. ZHOU Yuqing, ZHANG Zhaosen, YUAN Guozhou. Powder abrasion material in simulated space state[J]. Materials Science and Engineering of Powder Metallurgy, 2005, 10(1): 50-54. [9] 肖叶龙, 姚萍屏, 汞太敏, 等. 石墨与MoS2配比对空间对接摩擦材料性能的影响[J]. 中国有色金属学报, 2012(9): 2539- 2545. YE Xiaolong, YAO Pingping, Gong Taimin, et al. Effects of proportion of graphite and MoS2 on performances of space docking friction material[J]. The Chinese Journal of Nonferrous Metals, 2012(9): 2539-2545. [10] 王秀飞, 尹彩流. 粉末冶金摩擦材料的应用现状及对原材料的要求[J]. 粉末冶金工业, 2017, 27(1): 1-6. WANG Xiufei, YIN Cailiu. Application situations of powder metallurgy friction materials and requests of raw materials[J]. Powder Metallurgy Industry, 2017, 27(1): 1-6. [11] 钟志刚, 李东生. 重载汽车金属陶瓷离合器片的研制[J]. 材料工程, 2000(1): 42-43. ZHONG Zhigang, LI Dongsheng. Development of clutch plate for heavy vehicles[J]. Journal of Materials Engineering, 2000(1): 42-43. [12] 黄培云. 粉末冶金原理[M]. 第2版. 北京: 冶金工业出版社, 1997: 38. HUNAG Peiyun. Principles of Powder Metallurgy[M]. 2th ed. Beijing: Metallurgical Industry Press, 1997: 38. [13] 鲁乃光. 烧结金属摩擦材料现状与发展动态[J]. 粉末冶金技术, 2002, 20(5): 294-298. LU Naiguang. The present state and tendency of sintered friction materials in the world[J]. Powder Metallurgy Technology, 2002, 20(5): 294-298. [14] 龙波, 白同庆, 李东生. FeSO4对铜基粉末冶金摩擦材料性能的影响[J]. 材料导报, 2008, 22(z1): 445-447. LONG Bo, BAI Tongqing, LI Dongsheng. Effect of FeSO4 addition on properties of copper-based powder metallurgy friction material[J]. Materials Review, 2008, 22(z1): 445-447. [15] 付昌星, 张晓旭. 离合器用30CrMnSiA钢制动片和铜基粉末冶金摩擦片的温摩擦磨损性能分析[J]. 粉末冶金工业, 2019, 29(3): 41-45. FU Changxing, ZHANG Xiaoxu. Thermal friction and wear performance analysis of 30CrMnSiA stell brake plate and copper-based powder metallurgy friction plate for clutch[J]. Powder Metallurgy Industry, 2019, 29(3): 41-45. [16] 周永欣, 徐飞, 吕振林, 等. SiC和石墨颗粒混杂增强铜基复合材料的摩擦磨损性能[J]. 机械工程材料, 2015, 39(2): 90-93, 97. ZHOU Yongxin, XU Fei, LÜ Zhenlin, et al. Friction and wear properties of Cu matrix composites hybrid reinforced with SiC and graphite particles[J]. Materials for Mechanical Engineering, 2005, 39(2): 90-93, 97. [17] 周海滨. 粉末冶金摩擦材料特征摩擦组元与铜基体的界面及其对摩擦磨损机理影响研究[D]. 长沙: 中南大学, 2014. ZHOU Haibin. Research on effects of characteristic friction components/Cu matrix interface on friction and wear mechanism of powder metallurgy friction materials[D]. Changsha: Central South University, 2014. [18] 屈盛官, 袁志敏, 赖福强, 等. 中重型车辆离合器摩擦副材料的高温摩擦磨损性能[J]. 中南大学学报(自然科学版), 2018, 49(5): 1087-1094. QU Shengguan, YUAN Zhimin, LAI Fuqiang, et al. Friction and wear properties for clutch friction materials in medium-heavy- duty vehicles at high temperature[J]. Journal of Central South University( Natural Science), 2018, 49(5): 1087-1094.