Microstructures and mechanical properties of ZrH2/6060 aluminum alloy fabricated by selective laser melting
TU Cheng, LIU Yunzhong, HU Liang, ZHOU Zhiguang
National Engineering Research Center of Near-net-shape Forming Technology for Metallic Materials, South China University of Technology, Guangzhou 510640, China
Abstract:The 6060+1%ZrH2 composite powder was prepared by short-time low energy ball milling with 1% (mass fraction ,the same as below) submicron ZrH2 powder added into 6060 aluminum alloy atomized powder. Then 6060 aluminium alloy containing zirconium was prepared by Selective laser melting (SLM) forming process. The microstructures and mechanical properties of 6060 aluminium alloy were analyzed and tested with different SLM process conditions. The effects of ZrH2 addition on the microstructures and mechanical properties of 6060 aluminium alloy were studied. The results show that the density of 6060 aluminium alloy increases from 93.8% to 97.8% after adding 1% submicron ZrH2, and the cracking of formed sample is restrained. The surface spheroidization phenomenon is weakened, the surface quality is remarkably improved, the surface is smooth, and there are no large pores and other defects. The grain size of the formed sample is significantly refined from 56 μm to 3 μm. Compared with 6060 aluminum alloy without sub-micron addition of ZrH2, the tensile strength, yield strength, elongation and micro-hardness of AA6060+Zr specimens increase by 26.0%, 73.0%, 126.8% and 21.8% respectively.
涂诚, 刘允中, 胡亮, 周志光. 激光选区熔化成形ZrH2/6060铝合金的显微组织与力学性能[J]. 粉末冶金材料科学与工程, 2019, 24(4): 349-357.
TU Cheng, LIU Yunzhong, HU Liang, ZHOU Zhiguang. Microstructures and mechanical properties of ZrH2/6060 aluminum alloy fabricated by selective laser melting. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4): 349-357.
[1] 杨永强, 陈杰, 宋长辉, 等. 金属零件激光选区熔化技术的现状及进展[J]. 激光与光电子学进展, 2018, 55(1): 9-21. YANY Yongqiang, CHEN Jie, SONG Changhui, et al.Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 2018, 55(1): 9-21. [2] MUMTAZ K, HOPKINSON N.Top surface and side roughness of Inconel 625 parts processed using selective laser melting[J]. Rapid Prototyping Journal, 2009, 15(2): 96-103. [3] 杨全占, 魏彦鹏, 高鹏, 等. 金属增材制造技术及其专用材料研究进展[J]. 材料导报, 2016(s1): 107-111. YANG Quanzhan, WEI Yanpeng, GAO Peng, et al.Research progress of metal additive manufacturing technologies and related materials[J]. Materials Repotrts, 2016(s1): 107-111. [4] 赵志国, 柏林, 李黎, 等. 激光选区熔化成形技术的发展现状及研究进展[J]. 航空制造技术, 2014, 463(19): 46-49. ZHAO Zhiguo, BAI Lin, LI Li, et al.Status and progress of selective laser melting forming technology[J]. Aeronautical Manufacturing Technology, 2014, 463(19): 46-49. [5] YU H, YANG J, YIN J, et al.Comparison on mechanical anisotropies of selective laser melted Ti-6Al-4V alloy and 304 stainless steel[J]. Materials Science & Engineering A, 2017. 695: 92-100. [6] MAO Z, ZHANG D Z, JIANG J, et al.Processing optimisation, mechanical properties and microstructural evolution during selective laser melting of Cu-15Sn high-tin bronze[J]. Materials Science & Engineering A, 2018, 721:125-134. [7] 张虎, 聂小佳, 朱海红, 等. 激光选区熔化成形高强Al-Cu- Mg合金研究[J]. 中国激光, 2016(5): 78-84. ZHANG Hu, NIE Xiaojia, ZHU Haihong, et al.Study on high strength Al-Cu-Mg alloy fabricated by seletive laser melting[J]. Chinese Journal of Lasers. 2016(5): 78-84. [8] WANG X, CARTER L N, PANG B, et al.Microstructure and yield strength of SLM-fabricated CM247LC Ni-superalloy[J]. Acta Materialia, 2017, 128(Complete): 87-95. [9] LI X P, JI G, CHEN Z, et al.Selective laser melting of nano-TiB2, decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia, 2017, 129(Complete): 183-193. [10] SIDDIQUE S, IMRAN M, WYCISK E, et al.Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting[J]. Journal of Materials Processing Technology, 2015, 221: 205-213. [11] MARTIN J H, YAHATA B D, HUNDLEY J M, et al.3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365. [12] ZHANG H, ZHU H, NIE X, et al.Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy[J]. Scripta Materialia, 2017, 134: 6-10. [13] LOH L E, LIU Z H, ZHANG D Q, et al.Selective laser melting of aluminium alloy using a uniform beam profile[J]. Virtual and Physical Prototyping, 2014, 9(1): 11-16. [14] DJURAEV A, Porosity Reduction and Characterization of Aluminium Components Produced by Additive Manufacturing[D]. Trondheim:Norwegian University of Science and Technology, 2017. [15] 牛向荣, 毛昌辉, 杨剑, 等. ZrH2/6063Al复合材料界面反应研究[J]. 粉末冶金技术, 2013, 31(4): 253-258. NIU Xiangrong, MAO Changhui, YANG Jian, et al.Study on interfacial reaction of ZrH2/6063Al composites[J]. Powder Metallurgy Technology, 2013, 31(4): 253-250. [16] GRIFFITHS S, Rossell M D, Croteau J, et al.Effect of laser rescanning on the grain microstructure of a selective laser melted Al-Mg-Zr alloy[J]. Materials Characterization, 2018,143: 34-42. [17] 李大武, 李杰, 李涛, 等. 以ZrH2为发泡剂的泡沫铝制备和表征[J]. 中国有色金属学报: 英文版, 2011(2): 346-352. LI Dawu, LI Jie, LI Tao, et al.Preparation and characterization of aluminum foams with ZrH2 as foaming agent[J]. Transactions of Nonferrous Metals Society of China, 2011(2): 346-352. [18] WEINGARTEN C, BUCHBINDER D, PIRCH N, et al.Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg[J]. Journal of Materials Processing Technology, 2015, 221: 112-120. [19] 张格, 王建宏, 张浩. 金属粉末选区激光熔化球化现象研究[J]. 铸造技术, 2017(2): 262-265. ZHANG Ge, WANG Jianhong, ZHANG Hao.Research progress of balling phenomena in selective laser melting[J]. Foudry Technology, 2017(2): 262-265. [20] LI X P, JI G, CHEN Z, et al.Selective laser melting of nano-TiB2, decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia, 2017, 129(Complete): 183-193. [21] 周文标, 王中霞, 胡永忠. 均匀化退火工艺对6060铝合金挤压材力学性能的影响[J]. 轻合金加工技术, 2012, 40(7): 47-50. ZHOU Wenbiao, WANG Zhongxia, HU Yongzhong.Effect of homogenization treatment on mechanical properties of 6060 aluminum alloy extrusions[J]. Light Alloy Fabrication Technology, 2012, 40(7): 47-50. [22] HANSEN N.Hall-petch relation and boundary strengthening[J]. Scripta Materialia, 2004, 51(8): 801-806.