Abstract:Four kinds of Al-Zn-Mg-Cu alloys adding Yb, Zr, Ti were prepared by cast metallurgy. Effects of Yb-Zr, Zr-Ti, Yb-Ti, Yb-Zr-Ti additions on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloy were compared by optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), hardness and tensile test. The results show that, the Al-Zn-Mg-Cu alloy with Yb-Ti additions forms obvious subgrain boundaries during hot extrusion. After solution treatment, the alloys with Yb-Ti and Zr-Ti additions have obvious recrystallization. The alloys with Yb-Zr and Yb-Zr-Ti have obvious effect of restraining recrystallization due to the precipitation of a large number of coherent Al3(Zr,Yb) dispersed phases with size of 10-20 nm. Micron-sized Al8Cu4Yb and Al20Ti2Yb phases are precipitated in Al-Zn-Mg-Cu alloy with Yb-Ti addition, which induce the matrix recrystallization. Al-Zn-Mg-Cu-Yb-Zr alloy without recrystallization has the highest mechanical properties and fracture toughness, the ultimate strength, yield strength, elongation and fracture toughness are 721.9 MPa, 711.5 MPa, 9.7 %, 29.3 MPa·m1/2, respectively, and exhibits complete dimple fracture characteristics. The mechanical properties of Al-Zn-Mg-Cu-Yb-Ti alloy with complete recrystallization are the lowest, and the fracture mode is complete intergranular fracture.
方华婵, 朱佳敏, 陈卓, 刘滩. 复合添加Yb,Zr,Ti对超高强Al-Zn-Mg-Cu合金组织和力学性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(2): 176-187.
FANG Huachan, ZHU Jiamin, CHEN Zhuo, LIU Tan. Effect of Yb, Zr, Ti additions on the microstructure and mechanical properties of super-high strength Al-Zn-Mg-Cu alloys. Materials Science and Engineering of Powder Metallurgy, 2019, 24(2): 176-187.
[1] HEINZ A, HASZLER A, KEIDEL C E, et al.Recent development in aluminium alloys for aerospace applications[J]. Materials Science and Engineering A, 2000, 280(1): 102-107. [2] DURSUN T, SOUTIS C.Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design, 2014, 56: 862-871. [3] SONG R G, DIETZAL W, ZHANG B J, et al.Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia, 2004, 52(16): 4727-4743. [4] LIU Yuan, LIANG Shuai, JIANG Daming.Influence of repetitious non-isothermal aging on microstructure and strength of Al-Zn-Mg-Cu alloy[J]. Journal Alloy and Compounds, 2016, 689: 632-640. [5] KNIGHT S P, POHL K, HOLROYD N J H, et al. Some effects of alloy composition on stress corrosion cracking in Al-Zn- Mg-Cu alloys[J]. Corrosion Science, 2015, 98: 50-62. [6] KNIGHT S P, BIRBILIS N, MUDDLE B C, et al.Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn- Mg-Cu alloy[J]. Corrosion Science, 2010, 52(12): 4073-4080. [7] KANNAN M B, RAJA V S.Enhancing stress corrosion cracking resistance in Al-Zn-Mg-Cu-Zr alloy through inhibiting recrystallization[J]. Engineering Fracture Mechanics, 2010, 77(2): 249-256. [8] 方华婵, 陈康华, 巢宏, 等. Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J]. 粉末冶金材料科学与工程, 2009, 14(6): 351-357. FANG Huachan, CHEN Kanghua, CHAO Hong, et al.Current research status and prospects of ultra strength Al-Zn-Mg-Cu aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(6): 351-357. [9] KNIPLING K E, DUNAND D C, SEIDMAN D N.Criteria for developing castable, creep-resistant aluminum-based alloys-A review[J]. Z. Metallkunde, 2006, 97(3): 246-265. [10] WU Y L, FORES F H, LI C G, et al.Microalloying of Sc, Ni, and Ce in advanced Al-Zn-Mg-Cu alloy[J]. Metallurgical and Materials Transaction A, 1999, 30: 1017-1024. [11] 聂祚仁, 文胜平, 黄晖, 等. 铒微合金化铝合金的研究进展[J]. 中国有色金属学报, 2011, 21(10): 2361-2371. NIE Zuoren, WEN Shengping, HUANG Hui, et al.Research progress of Ercontaining aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2361-2371. [12] WU H, WEN S P, HUANG H, et al, Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy[J]. Journal Alloy and Compounds, 2016, 685: 869-880. [13] FANG H C, LUO F H, CHEN K H.Effect of intermetallic phases and recrystallization on the corrosion and fracture behavior of an Al-Zn-Mg-Cu-Zr-Yb-Cr alloy[J]. Materials Science and Engineering A, 2017, 684: 480-490. [14] FANG H C, CHAO H, CHEN K H.Effect of Zr, Er and Cr additions on microstructures and properties of Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering A, 2014, 610: 10-16. [15] ZHANG Wei, XING Yuan, JIA Zhihong, et al.Effect of minor Sc and Zr addition on microstructure and properties of ultra-high strength aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3866-3871. [16] LI Peiyong, DAI Shenglong, LI Chunyu.Thermal stability of Al20Ti2Nd in rapidly solidified Al-6Nd-2.5Ti alloy by planar flow casting[J]. Materials Science and Engineering A, 2000, 280(1): 128-137. [17] SABINE N, WOLFGANG J.Ternary aluminides AT2Al20 (A= Rare Earth Elements and Uranium; T=Ti, Nb, Ta, Mo, and W) with CeCr2Al20-type structure[J]. Journal of Solid State Chemistry, 1995, 114(2): 337-341. [18] 刘晓涛, 董杰, 崔建忠,等. 高强铝合金均匀化热处理[J]. 中国有色金属学报, 2003, 13(4): 909-913. LIU Xiaotao, DONG Jie, CUI Jianzhong, et al.Homogenizing treatment of high strength aluminium alloy cast under electric magnetic field[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(4): 909-913. [19] 王经涛, 崔建忠, 马龙翔. 元素之间的交互作用强度及其在铸态稀土铝合金中的应用[J]. 西安冶金建筑学院学报, 1993, 25(4): 445-449. WANG Jingtao, CUI Jianzhong, MA Xianglong.Interaction intensity of alloying elements and application in as-cast aluminium alloys with rare earth additions[J]. Journal of Xi’an University of Architecture & Technology, 1993, 25(4): 445-449. [20] 方华婵, 巢宏, 张茁, 等. 复合添加Zr, Ti和Cr对Al-Zn-Mg- Cu超强合金组织与性能的影响[J]. 中南大学学报: 自然科学版, 2016, 47(2): 420-429. FANG Huachan, CHAO Hong, ZHANG Zhuo, et al.Effect of Zr, Ti and Cr additions on microstructure and properties of super- high strength Al-Zn-Mg-Cu alloys[J]. Journal of Central South University: Science and Technology, 2016, 47(2): 420-429.