Abstract:The microstructure and mechanical properties of domestic CCF300-3K carbon fiber and KD-II SiC fiber were characterized. The mechanical properties of fibers were measured by tensile test of monofilament. The surface and tensile fracture morphology and inner structure of fibers were observed by SEM, AFM and TEM. The amorphous phase composition of KD-II SiC fibers were determined by XPS. The crystallinity and crystallite size were analyzed by XRD. Some data references for the preparation and application of the fibers were provided. The results show that, there are a large number of grooves on the surface of CCF300-3K carbon fiber which leads to the increasing of surface roughness; The graphite microcrystals with low crystallinity axially distribute along the fiber, and the space between graphite microcrystals is filled with amorphous carbon; The fracture source of the tensile fracture is the grooves on the fiber surface. The surface of KD-II SiC fiber is smooth and the roughness is too small; The grains of silicon carbide with good crystallinity randomly distribute in the matrix which composed of amorphous SiOxCy and free carbon; The fracture source of the tensile fracture is the internal hole or inclusion. The Weibull statistical analysis indicate that the tensile strength of CCF300-3K carbon fiber and KD-II SiC fiber are 3.08?0.02 GPa and 2.36?0.03 GPa, shape parameter of m value are 6.46 and 9.27, respectively. These shows that they have good structure, high mechanical properties and stability, which are fully meeting the requirements of engineering applications.
胡光敏, 杨丰豪, 何昊源, 易茂中. CCF300-3K炭纤维和KD-II碳化硅纤维的微观结构与力学性能[J]. 粉末冶金材料科学与工程, 2018, 23(5): 467-474.
HU Guangmin, YANG Fenghao, HE Haoyuan, YI Maozhong. Microstructure and mechanical properties of CCF300-3K carbon fiber and KD-II SiC fiber. Materials Science and Engineering of Powder Metallurgy, 2018, 23(5): 467-474.
[1] 李进卫. 碳纤维增强复合材料性能特点及其应用领域[J]. 化学工业, 2015, 33(8):13-18. LI Jingwei.Present status and developing focus of chemical new material industry[J]. Chemical Industry, 2015, 33(8): 13-18. [2] 程卫平. 聚丙烯腈基碳纤维在航天领域应用及发展[J]. 宇航材料工艺, 2015, 45(6): 11-16. CHENG Weiping.Development of PAN-based carbon fibers in aerospace[J]. Aerospace Materials and Technology, 2015, 45(6): 11-16. [3] 李建利, 张新元, 张元, 等. 碳纤维的发展现状及开发应用[J]. 成都纺织高等专科学校学报, 2016, 33(2): 158-164. LI Jianli, ZHANG Xinyuan, ZHANG Yuan, et al.Development and application of carbon fiber[J]. Journal of Chengdu Textile College, 2016, 33(2): 158-164. [4] 余黎明. 我国碳纤维行业现状和发展趋势分析[J]. 新材料产业, 2011(6): 13-21. YU Liming.Analysis of the current situation and development trend of carbon fiber industry in China[J]. Advanced Materials Industry, 2011(6): 13-21. [5] 冯志海. 关于我国高性能碳纤维需求和发展的几点想法[J]. 新材料产业, 2010(9): 19-24. FENG Zhihai.Some ideas about the demand and development of high performance carbon fiber in China[J]. Advanced Materials Industry, 2010(9): 19-24. [6] 杨大祥, 宋永才. 先驱体法制备连续SiC纤维的特性及其应用[J]. 兵器材料科学与工程, 2007, 30(6): 64-69. YANG Dayong, SONG Yongcai.Properties and applications of polymer-derived continuous SiC fibers[J]. Ordnance Material Science and Engineering, 2007, 30(6): 64-69. [7] 李崇俊. SiC/SiC复合材料及其应用[J]. 高科技纤维与应用, 2013, 38(3): 1-7. LI Chongjun.SiC/SiC composites and application[J]. Hi-Tech Fiber & Application, 2013, 38(3): 1-7. [8] 马小民, 冯春祥, 田秀梅, 等. 国产连续碳化硅纤维的进展及应用[J]. 高科技纤维与应用, 2013, 38(5): 47-50. MA Xiaomin, FENG Chunxiang, TIAN Xiumei, et al.The latest development and application on domestic continuous silicon carbide fiber[J]. Hi-Tech Fiber & Application, 2013, 38(5): 47-50. [9] 王应德. 高性能连续碳化硅纤维研究与应用[C]// 李斌. 耐高温无机纤维应用技术与市场发展研讨会论文集. 南京: 中国硅酸盐学会, 2016: 11-13. WANG Yingde.Research and application of high performance continuous silicon carbide fiber[C]// LI Bin. High Temperature Resistant Inorganic Fiber Application Technology and Market Development Symposium, Nanjing: The Chinese Ceramic Society, 2016: 11-13. [10] The International Organization for standardization. ISO 11566: 1996 Method B: Carbon fibre: Determination of the tensile properties of as single-filament specimens[S]. Switzerland: Technical committees, 1996. [11] American Society for Testing and Materials. ASTM D-3379- 75[M]// Annual Book of ASTM Standards, Part 15. Philadelphia, American: Kasem H, 1985. [12] ZHANG X G, LI J, MIAO Z L.Effect of spinning conditions on the morphology of polyacrylonitrile hollow fiber membranes[J]. Advanced Materials Research, 2011, 221(6): 146-151. [13] 葛曷一, 柳华实, 陈娟. PAN原丝至碳纤维缺陷的形成与遗传性[J]. 合成纤维, 2009, 38(2): 21-25. GE Heyi, LIU Huashi, CHENG Juan.The formation and heredity of defects form PAN precursor to carbon Fiber[J]. Synthetic Fiber in China, 2009, 38(2): 21-25. [14] 刘晖, 孔令强, 宋邦琼, 等. PAN基碳纤维原丝表面形态控制研究[J]. 化工科技, 2016, 24(2): 40-43. LIU Hui, KONG Lingqiang, SONG Bangqiong, et al.Surface morphology control of PAN precursor fiber[J]. Science & Technology in Chemical Industry, 2016, 24(2): 40-43. [15] 张均, 李常清, 赵振文, 等. 液/固转化过程对PAN纤维晶态和表面结构的影响[C]// 张俊科. 基础、创新、高效: 全国复合材料学术会议论文集. 宜昌: 中国航空学会, 2006: 164-167. ZHANG Jun, LI Changqing, ZHAO Zhengwen, et al.Effect of liquid/solid conversion on crystal and surface stucture of polyacrylonitrile fiber[C]// ZHANG Junke. Foundation, Innovation and Efficiency: the National Symposium on Composite Materials. Yichang: China Aeronautical Society, 2006: 164-167. [16] 张均. 聚丙烯腈原丝表面结构形态的形成与演变[D]. 北京:北京化工大学, 2007. ZHANG Jun.Formation and evolution of polyacrylonitrile fiber’s surface structure[D]. Beijing: Beijing University of Chemical Technology, 2007. [17] 姚寅, 陈少华. 碳纤维表面粗糙度对碳/环氧树脂基复合材料界面性能的影响[C]// 中国力学大会, 北京, 2013, 21(3): 35-47. YAO Yin, CHEN Shaohua.Effect of carbon fiber’s surface roughness on the interfacial performances of carbon/epoxy composites[C]// CCTAM, Beijing, 2013, 21(3): 35-47. [18] 郭慧. 碳纤维表面能、表面粗糙度及化学组成的表征[D]. 哈尔滨: 哈尔滨工业大学, 2010. GUO Hui.Characterization of surface energy, surface roughness and chemical component of carbon fibers[D]. Harbin: Harbin Institute of Technology, 2010. [19] 李建国, 王宝瑞, 李冬梅, 等. MJ系列碳纤维拉伸强度影响因素探讨[J]. 纤维复合材料, 2007, 24(4): 32-35. LI Jianguo, WANG Baorui, LI Dongmei, et al.Study on influence factors of tension Strength for the MJ series carbon Fiber[J]. Fiber Composites, 2007, 24(4): 32-35. [20] CHOLLON G, PAILLER R, NASLAIN R, et al.Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi-Nicalon)[J]. Journal of Materials Science, 1997, 32(2): 327-347. [21] NARISAWA M, KITANO S, IDESAKI A, et al.Thermal oxidation crosslinking in the blended precursors of organosilicon polymers containing polyvinylsilane with polycarbosilane[J]. Journal of Materials Science, 1998, 33(10): 2663-2666. [22] SHIMOO T, TOYODA F, OKAMURA K.Oxidation kinetics of low-oxygen silicon carbide fiber[J]. Journal of Materials Science, 2000, 35(13): 3301-3306. [23] 王浩静, 王红飞, 李东风, 等. 石墨化温度对炭纤维微观结构及其力学性能的影响[J]. 新型炭材料, 2005(2): 157-163. WANG Haojing, WANG Hongfei, LI Dongfeng, et al.The effect of graphitization temperature on the microstructure and mechanical properties of carbon fibers[J]. New Carbon Materials, 2005(2): 157-163. [24] 蓝新艳, 王应德, 薛金根. SiC纤维力学性能的Weibull分布[C]// 王玉敏. 全国复合材料学术会议论文集. 成都: 中国航空学会 2004: 296-300. LAN Xinyan, WANG Yingde, XUE Jingen.Weibull analysis of the silicon carbon fiber mechanics performance[C]// WANG Yumin. National Symposium on composite materials. Chengdu: China Aeronautical Society, 2004: 296-300. [25] 楚增勇, 王应德, 程海峰, 等. 缺陷类型对SiC纤维抗拉强度与直径关系的影响[J]. 稀有金属材料与工程, 2008, 37(s1): 807-809. CHU Zengyong, WANG Yingde, CHENG Haifeng, et al.Effects of defect types on the relationship between tensile strength and diameter of SiC fibers[J]. Rare Metal Materials and Engineering, 2008, 37(s1): 807-809. [26] 郭慧, 黄玉东, 刘丽, 等. T300和国产碳纤维本体的力学性能对比及其分析[J]. 宇航学报, 2009, 30(5): 2068-2072. GUO Hui, HUANG Yudong, LIU Li, et al.Comparison of mechanical property of unsized T300 and Chinese carbon fibers[J]. Journal of Astronauties, 2009, 30(5): 2068-2072. [27] 武玉芬, 张博明. 碳纤维拉伸强度的离散性分析[J]. 玻璃钢/复合材料, 2010(3): 29-31. WU Yufen, ZHANG Boming.The discrete analysis on the tensile strength of carbon fiber[J]. Fiber Reinforced Plastics/ Composites, 2010(3): 29-31. [28] 李建国, 王宝瑞, 李冬梅, 等. MJ系列碳纤维拉伸强度影响因素探讨[J]. 纤维复合材料, 2007, 24(4): 32-35. LI Jianguo, WANG Baorui, LI Dongmei, et al.Study on influence factors of tension strength for the MJ series carbon fiber[J]. Fiber Composites, 2007, 24(4): 32-35. [29] 贺福. 缺陷是碳纤维的致命伤[J]. 高科技纤维与应用, 2010, 35(4): 25-31. HE Fu.Defects are particularly serious for carbon fibers[J]. Hi-Tech Fiber & Application, 2010, 35(4): 25-31.