Abstract:Cu-3Ag-0.5Zr alloy powder was fabricated by argon gas atomization, and its particle size distribution, oxygen content, apparent density, flowability, morphology, phase and microstructure were investigated. The results show that argon gas atomized Cu-3Ag-0.5Zr alloy powders are almost spherical and normal distribution. 90% of particle size of the powders is less than 200 μm. The median diameter Dv(50) is about 49.9 μm. Oxygen content (mass fraction) of Cu alloy powders with size less than 50 μm, between 50-106 μm and more than 106 μm are 0.067%, 0.039% and 0.013%, the apparent density are 4.39, 4.95 and 5.02 g/cm3, and the flowability are 16.59, 15.96 and 15.62 s/50 g, respectively. The microstructure of the powders is fine and homogeneous, and the average grain size is 3.82 μm. The microstructure of large particle size powders is dendritic crystal structure and the microstructure of small particle size powders is equiaxed crystal structure. There is no obvious Ag or Zr second-phase precipitation in powder matrix, and the structure of powder is a homogeneous supersaturated solid solution.
文靖瑜, 刘祖铭, 麻梦梅, 吕学谦. 氩气雾化制备Cu-3Ag-0.5Zr合金粉末的显微组织及性能[J]. 粉末冶金材料科学与工程, 2019, 24(4): 329-333.
WEN Jingyu, LIU Zuming, MA Mengmei, LÜ Xueqian. Microstructure and properties of Cu-3Ag-0.5Zr alloy powder prepared by argon gas atomization. Materials Science and Engineering of Powder Metallurgy, 2019, 24(4): 329-333.
[1] SINGH J, JERMAN G, POORMAN R, et al.Mechanical properties and microstructural stability of wrought, laser, and electron beam glazed NARloy-Z alloy at elevated temperatures[J]. Journal of Materials Science, 1997, 32(14): 3891-3903. [2] SIMON D.A comparison of filtering approaches for aircraft engine health estimation[J]. Aerospace Science and Technology, 2008, 12(4): 276-284. [3] LYUBIMOVA J, FREUDENBERGER J, MICKEL C, et al.Microstructural inhomogeneities in Cu-Ag-Zr alloys due to heavy plastic deformation[J]. Materials Science and Engineering A, 2010, 527(3): 606-613. [4] BITTMER F, YIN S, KAUFFMANN, et al. Dynamic recrystallisation and precipitation behaviour of high strength and highly conducting Cu-Ag-Zr-alloys[J]. Materials Science and Engineering A, 2014, 597(12): 139-147. [5] 宋练鹏, 孙伟, 尹志民. Ag和Zr对Cu-Ag-Zr合金组织和性能的影响[J]. 金属热处理, 2006, 31(8): 46-48. SONG Lianpeng, SUN Wei, YIN Zhiming.Effects of Ag and Zr on microstructures and properties of Cu-Ag-Zr alloy[J]. Heat Treatment of Metals, 2006, 31(8): 46-48. [6] 徐然, 罗丰华, 唐琳. Zr含量和热处理工艺对铜银锆合金性能与组织的影响[C]// 2013中国有色金属加工行业技术进步产业升级大会论文集. 苏州: 中国有色金属加工工业协会, 2013: 401-407. XU Ran,LUO Fenghua, TANG Lin.Effects of Zr content and heat treatment on properties and microstructures of CuAgZr alloys[C]// 2013 Proceedings of the Conference on Technological Progress and Industrial Upgrading in China Nonferrous Metals Fabrication Industry. Suzhou: China Nonferrous Metals Fabrication Industry Association, 2013: 401-407. [7] 徐玉松, 殷思敏, 张超. 铜银锆合金热处理工艺的优化及析出相[J]. 机械工程材料, 2012, 36(1): 72-75. XU Yusong, YIN Simin, ZHANG Chao.Optimization of heat treatment process and precipitation phase of CuAgZr alloy[J]. Materials for Mechanical Engineering, 2012, 36(1): 72-75. [8] 马行驰, 黄金亮, 贾淑果, 等. 时效工艺对Cu-Ag-Zr合金电磨损性能的影响[J]. 河南科技大学学报: 自然科学版, 2005, 26(3): 7-9. MA Xingchi, HUANG Jinliang, JIA Shuguo, et al.Effect of aging process on the electrical wear properties of Cu-Ag-Zr alloy[J]. Journal of Henan University of Science & Technology: Natural Science, 2005, 26(3): 7-9. [9] CODDET P, VERDY C, CODDET C, et al.Mechanical properties of cold spray deposited NARloy-Z copper alloy[J]. Surface and Coatings Technology, 2013, 232: 652-657. [10] 麻梦梅. 高强高导Cu-3Ag-0.5Zr合金SPS烧结及热处理工艺研究[D]. 长沙: 中南大学, 2016. MA Mengmei.The study on spark plasma sintering and heat treatment process of high strength and high conductivity Cu-3Ag-0.5Zr alloy[D]. Changsha: Central South University, 2016. [11] 刘祖铭, 麻梦梅, 黄伯云, 等. 一种放电等离子烧结制备高强高导铜合金的方法: CN106591610B[P]. 中国, 2015-10-16. LIU Zuming, MA Mengmei, HUANG Boyun, et al. A method for preparing high strength and high conductivity copper alloy prepared by spark plasma sintering: CN106591610B[P]. China, 2015-10-16. [12] 蔡宏中, 秦国义, 赵永坤. 超音速电弧熔化气雾化CuAg10粉末的特征[J]. 贵金属, 2008, 29(2): 15-18. CAI Hongzhong, QIN Guoyi, ZHAO Yongkun.Characteristics of CuAg10 powders by ultrasonic arc gas atomization process[J]. Precious Metals, 2008, 29(2): 15-18. [13] 祝溪明, 宋亮. 液相还原法制备纳米晶Cu-Ag合金粉末[J]. 沈阳师范大学学报: 自然科学版, 2008, 26(2): 206-208. ZHU Ximing, SONG Liang.Preparation of nano-copper-silver alloyed powder by reduction process in liquid phase[J]. Journal of Shenyang Normal University: Natural Science, 2008, 26(2): 206-208. [14] 张超. 航天动力系统用铜合金材料的高温力学行为研究[D].镇江: 江苏科技大学, 2011. ZHANG Chao.Research on high temperature mechanical behavior of copper alloy materials with aerospace powder systems[D]. Zhenjiang: Jiangsu University of Science and Technology, 2011.