Preparation and properties of Cr3C2-doped Ni-P-PTFE chemical composite coating
WANG Jiangang1,2, XU Meiqi1,2, WANG Xue1,2, SUN Yihan1,2, WANG Yujiang3
1. School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China; 2. Hebei Province Short Process Steelmaking Technology Innovation Center, Shijiazhuang 050018, China; 3. Department of Equipment Support and Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
Abstract:To enhance the corrosion resistance and hardness of the surface of medical device components based on ferritic stainless steel, this study employed a chemical composite plating method to prepare xCr3C2/Ni-P-PTFE (polytetrafluoroethylene) coatings on the surface of ferritic stainless steel. The influences of Cr3C2 mass concentrations (10, 15, 20 g/L) on the hardness, surface morphology, phase composition, and corrosion resistance of the Ni-P-PTFE chemical composite plating coatings before and after heat treatment were investigated. The results indicate that the incorporation of Cr3C2 particles at a certain mass concentration results in a smoother and more even surface of the Ni-P-PTFE coating, reducing surface roughness while enhancing hardness and corrosion resistance. When the Cr3C2 mass concentration is 15 g/L, the Ni-P-PTFE-Cr3C2 coating exhibits a uniform and smooth surface with the lowest roughness and a hardness (HV0.1) of 354; the surface corrosion current density decreases from 0.05 μA/cm2 to 0.02 μA/cm2, representing a 60% reduction and indicating superior corrosion resistance; after heat treatment (300 ℃, 2 h), due to the precipitation of Ni3P hard phase and Ni phase in the coating, the hardness (HV0.1) reaches 527, representing an increase of approximately 49%. The Ni-P-PTFE-Cr3C2 coating effectively improves the performance of the steel substrate used in medical device components.
王建刚, 许美琦, 王雪, 孙逸涵, 王玉江. Cr3C2掺杂Ni-P-PTFE化学复合镀层制备及性能[J]. 粉末冶金材料科学与工程, 2024, 29(6): 514-521.
WANG Jiangang, XU Meiqi, WANG Xue, SUN Yihan, WANG Yujiang. Preparation and properties of Cr3C2-doped Ni-P-PTFE chemical composite coating. Materials Science and Engineering of Powder Metallurgy, 2024, 29(6): 514-521.
[1] RUAMMAITREE A, PHOKHARATKUL D, NUNTAWONG N, et al.Improvement in corrosion resistance of stainless steel foil by graphene coating using thermal chemical vapor deposition[J]. Surface Review and Letters, 2018, 25(S1): 1840003. [2] 彭兰, 张宇, 高乐, 等. 超声纳米晶表面改性对选区激光熔化316L不锈钢微观结构和力学性能的影响[J]. 表面技术, 2024, 53(5): 137-148. PENG Lan, ZHANG Yu, GAO Le, et al.Effect of ultrasonic nanocrystal surface modification on microstructure and mechanical properties of SLM 316L stainless steel[J]. Surface Technology, 2024, 53(5): 137-148. [3] 李家峰, 王楠, 白晶莹, 等. 脉冲激光改性聚醚醚酮及表面金属化技术研究[J]. 表面技术, 2022, 51(3): 371-379. LI Jiafeng, WANG Nan, BAI Jingying, et al.Pulse laser modification of poly-ether-ketone for surface metallization[J]. Surface Technology, 2022, 51(3): 371-379. [4] 唐诗琪, 邢朝阳, 王圆圆, 等. 异质a-C:H/a-C:H:F配副的摩擦学行为研究[J]. 表面技术, 2024, 53(7): 107-115. TANG Shiqi, XING Zhaoyang, WANG Yuanyuan, et al.Tribological properties of a-C:H sliding on a-C:H:F films[J]. Surface Technology, 2024, 53(7): 107-115. [5] SEN S, CHATTERJEE A, RAMAKANTH D, et al.Recent advances in cathodic electrodeposition coatings with special reference to resin materials: a comprehensive review[J]. Progress in Organic Coatings, 2024, 190: 108387. [6] 尹志芳, 刘卫, 杨泱, 等. 一步电沉积法制备Ni-Mo-Nd/NF复合电极及其析氢性能研究[J]. 表面技术, 2024, 53(6): 214-221. YIN Zhifang, LIU Wei, YANG Yang, et al.One-step electrodeposition of Ni-Mo-Nd/NF electrodes and their hydrogen evolution performance[J]. Surface Technology, 2024, 53(6): 214-221. [7] 刘峻瑜, 栾涛, 刘龙飞, 等. 环路热管碳纤维毛细芯表面改性性能对比[J]. 表面技术, 2019, 48(1): 175-181. LIU Junyu, LUAN Tao, LIU Longfei, et al.Comparative study of surface modified carbon fiber capillary wicks in loop heat pipe[J]. Surface Technology, 2019, 48(1): 175-181. [8] FARZANEH A, EHTESHAMZADEH M, GHORBANI M, et al.Investigation and optimization of SDS and key parameters effect on the nickel electroless coatings properties by Taguchi method[J]. Journal of Coatings Technology and Research, 2010, 7(5): 547-555. [9] MAFI I R, DEHGHANIAN C.Studying the effects of the addition of TiN nanoparticles to Ni-P electroless coatings[J]. Applied Surface Science, 2011, 258(5): 1876-1880. [10] FARAJI S, FARAJI A H, NOORI S R, et al.Investigation on electroless Cu-P-micro/nano SiC composite coatings[J]. Surface Engineering, 2015, 31(3): 179-188. [11] PALANIAPPA M, SESHADRI S K.Hardness and structural correlation for electroless Ni alloy deposits[J]. Journal of Materials Science, 2007, 42(16): 6600-6606. [12] SAHOO P, DAS S K.Tribology of electroless nickel coatings: a review[J]. Materials & Design, 2011, 32(4): 1760-1775. [13] HE Y, ZHANG S, HE Y, et al.Strengthening effect of inclusion of ZrC nano-ceramic particles on the corrosion and wear resistance of Ni-P electroless deposits[J]. Thin Solid Films, 2022, 756: 139364. [14] FATIMA I, FAYYAZ O, YUSUF M M, et al.Enhanced electrochemical and mechanical performance of BN reinforced Ni-P based nanocomposite coatings[J]. Diamond and Related Materials, 2022, 130: 109454. [15] LI Z, HE Y, LIU B, et al.Preparation of superhard nanometer material cBN reinforced Ni-W-P nanocomposite coating and investigation of its mechanical and anti-corrosion properties[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2022, 651: 129600. [16] SHI L, HU J, LIN X, et al.A robust superhydrophobic PPS-PTFE/SiO2 composite coating on AZ31 Mg alloy with excellent wear and corrosion resistance properties[J]. Journal of Alloys and Compounds, 2017, 721: 157-163. [17] ZHANG S, LIANG X, GADD G M, et al.Advanced titanium dioxide-polytetrafluorethylene (TiO2-PTFE) nanocomposite coatings on stainless steel surfaces with antibacterial and anti-corrosion properties[J]. Applied Surface Science, 2019, 490: 231-241. [18] NARDI J A, STRAUSS J A, FARDO F M, et al.Wettability and anticorrosion of thin PTFE-like/alumina coatings on carbon steel[J]. Progress in Organic Coatings, 2020, 148: 105823. [19] WU J, DENG J, WANG R, et al.The tribological properties and corrosion resistance of PPS/PTFE-bronze coatings deposited by electrohydrodynamic jet deposition[J]. Surface and Coatings Technology, 2022, 436: 128322. [20] MATSUDA H, NISHIRA M, KIYONO Y, et al.Effect of surfactants addition on the suspension of PTFE particles in electroless plating solutions[J]. Transactions of the IMF, 1995, 73(1): 16-18. [21] MATSUDA H, KIYONO Y, NISHIRA M, et al.Effect of cationic surfactant on deposition behaviour in electroless Ni-P-PTFE composite plating[J]. Transactions of the IMF, 1994, 72(2): 55-57. [22] 查毅. 排球收纳车基材表面化学镀Ni-P/Cr3C2复合镀层[J]. 电镀与环保, 2020, 40(3): 38-40. CHA Yi.Electroless plating of Ni-P/Cr3C2 composite coating on substrate for volleyball storage cart[J]. Electroplating & Pollution Control, 2020, 40(3): 38-40. [23] 俞佳, 朱流, 罗来马, 等. 激光熔覆Cr3C2-Ni复合涂层的减摩性能[J]. 热加工工艺, 2010, 39(6): 86-88. YU Jia, ZHU Liu, LUO Laima, et al.Friction properties of Cr3C2-Ni coatings prepared by laser cladding[J]. Hot Working Technology, 2010, 39(6): 86-88. [24] ZHANG Q, TAN J, MENG L D, et al.Microstructure and properties of Co-Ni-Cr3C2 nanocomposite coatings produced by jet-electrodeposition[J]. Key Engineering Materials, 2020, 842: 55-62. [25] 高红霞, 纪莲清, 弓金霞. 塑料模具(Ni-P)-SiC-PTFE化学复合镀工艺[J]. 新技术新工艺, 2004(2): 50-52. GAO Hongxia, JI Lianqing, GONG Jinxia.The technology of (Ni-P)-SiC-PTFE chemicial composition coating to the plastic mould[J]. New Technology & New Process, 2004(2): 50-52. [26] SHARMA A, SINGH A.Corrosion and wear study of Ni-P-PTFE-Al2O3 coating: the effect of heat treatment[J]. Central European Journal of Engineering, 2014, 4(1): 80-89. [27] MISHCHENKO L, HATTON B, BAHADUR V, et al.Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano, 2010, 4(12): 7699-7707. [28] 陈翀宇, 卓健飞, 谢新, 等. Cr3C2质量浓度对Co-Cr3C2复合镀层微观结构及耐磨性的影响[J]. 电镀与涂饰, 2024, 43(8): 18-26. CHEN Chongyu, ZHUO Jianfei, XIE Xin, et al.Effect of Cr3C2 concentration on microstructure and wear resistance of electroplated Co-Cr3C2 composite coating[J]. Electroplating & Finishing, 2024, 43(8): 18-26.