Abstract:Using MoSi2 powders and Ti powders as raw materials, four groups of Ti-MoSi2 composites with Ti content (mass fraction, %) of 40%, 50%, 60% and 70% were prepared by spark plasma sintering, respectively, and the microstructure, density, hardness and fracture toughness of the material were analyzed and tested. The results show that, the four groups of Ti-MoSi2 composites all appear core-shell structure. Ti-MoSi2 composites are mainly composed of Ti5Si3 and Mo3Si. When the addition amount of Ti increases to 70%, Ti elementary phase appears in the sample. With increasing Ti content, the density and microhardness of Ti-MoSi2 decrease, and the fracture toughness increases gradually. The density of Ti-MoSi2 composites in the four groups is 5.54, 5.34, 5.24 and 5.16 g/cm3, Vickers hardness is 8.54, 8.22, 8.13 and 8.02 GPa, and fracture toughness is 7.02, 10.36, 11.62 and 24.52 MPa∙m1/2, respectively.
郝亚楠, 范景莲, 陆琼, 王圆圆. Ti含量对Ti-MoSi2复合材料组织与性能的影响[J]. 粉末冶金材料科学与工程, 2020, 25(1): 45-50.
HAO Yanan, FAN Jinglian, LU Qiong, WANG Yuanyuan. Effect of Ti content on microstructure and properties of Ti-MoSi2 composite material. Materials Science and Engineering of Powder Metallurgy, 2020, 25(1): 45-50.
[1] 傅恒志. 未来航空发动机材料面临的挑战与发展趋向[J]. 航空材料学报, 1998, 18(4): 54-63. FU Hengzhi.Challenge and development trends to future aero-engine materials[J]. Journal of Aeronautical Materials, 1998, 18(4): 54-63. [2] PEREPEZKO J H.The hotter the engine, the better[J]. Science, 2009, 326(5956): 1068-1069. [3] 陆琼, 王晓虹, 朱高明, 等. Nb、Al协同合金化MoSi2材料的燃烧合成与组织结构[J]. 粉末冶金材料科学与工程, 2014, 19(3): 459-466. LU Qiong, WANG Xiaohong, ZHU Gaoming, et al.Combustion synthesis and microstructure of Nb and Al co-alloyed MoSi2[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(3): 459-466. [4] 石少玉. Me-Mo-Si(Me=W,Nb)系高温三元金属硅化物的制备与表征[D]. 兰州: 兰州理工大学, 2009. SHI Shaoyu.Preparation and characteristic of Me-Mo-Si (Me=W, Nb) high-temperature ternary silicides[D]. Lanzhou: Lanzhou University of Technology, 2009. [5] SHARIFA A A, MISRAB A, PETROVICB J J, et al.Alloying of MoSi2 for improved mechanical properties[J]. Intermetallics, 2001, 9: 869-873. [6] 颜建辉, 张厚安, 李益民. TiC-TiB2增强MoSi2复合材料的力学性能及抗氧化行为[J]. 中国有色金属学报, 2009, 19(8): 1424-1430. YAN Jianhui, ZHANG Houan, LI Yimin.Mechanical properties and oxidation resistance behavior of TiC-TiB2 reinforced MoSi2 composites[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(8): 1424-1430. [7] 张俊才, 贾成才, 史延田. MoSi2-Ti3SiC2复合材料制备及抗氧化性能[J]. 粉末冶金技术, 2011, 29(6): 408-418. ZHANG Juncai, JIA Chengcai, SHI Yantian.Fabrication and oxidation resistance of MoSi2-Ti3SiC2 composite[J]. Powder Metallurgy Technology, 2011, 29(6): 408-418. [8] 徐东明. MoSi2的强韧化及氧化烧蚀性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. XU Dongming.The research of strengthening toughening, ablation and oxidation of molybdenum disilicide based composite[D]. Harbin: Harbin institute of technology, 2007. [9] 宁聪琴, 周玉. 医用钛合金的发展及研究现状[J]. 材料科学与工艺, 2002, 10(1): 100-106. NING Congqin, ZHOU Yu.Development and research status of biomedical titanium alloys[J]. Materials Science and Technology, 2002, 10(1): 100-106. [10] 成会朝, 范景莲, 卢明园, 等. 合金元素Ti对Mo合金性能及组织结构的影响[J]. 中南大学学报(自然科学版), 2009, 40(2): 395-399. CHENG Huichao, FAN Jinglian, LU Mingyuan, et al.Effect of alloyed element Ti on property and microstructure of Mo alloy[J]. Journal of Central South University (Science and Technology), 2009, 40(2): 395-399. [11] 廖家轩, 夏立芳, 孙跃. 铝合金等离子体基离子注入氮/钛结构及摩擦学特性[J]. 金属热处理学报, 2001(2): 9-14. LIAO Jiaxuan, XIA Lifang, SUN Yue.The structure and tribological characteristic for aluminum alloy implanted with N/Ti by PBII[J]. Transactions of Materials and Heat Treatment, 2001(2): 9-14. [12] 孙志雨. Ti/TiC对钨显微组织及性能的影响[D]. 长沙: 中南大学, 2015. SUN Zhiyu.Effect of Ti/TiC on microstructure and properties of tungsten[D]. Changsha: Central South University, 2015. [13] 梁英教, 车荫昌. 无机物热力学数据手册[M]. 沈阳: 东北大学出版社, 1996: 238-242. LIANG Yingjiao, CHE Yinchang.Inorganic Thermodynamic Data Sheet[M]. Shenyang: Northeastern University Press, 1996: 238-242. [14] 傅献彩, 沈文霞, 姚天扬, 等. 物理化学[M]. 北京: 高等教育出版社, 2005: 158-176. FU Xiancai, SHEN Wenxia, YAO Tianyang, et al.Physical Chemistry[M]. Beijing: Higher Education Press, 2005: 158-176. [15] 邹星礼, 鲁雄刚, 李重河, 等. 含钛高炉渣直接提取Ti5Si3及杂质去除机理[J]. 稀有金属材料与工程, 2012, 41(1): 173-177. ZOU Xingli, LU Xionggang, LI Chonghe, et al.Direct extraction of Ti5Si3 alloy fromTi-bearing blast furnace slag and the removal mechanism of impurities[J]. Rare Metal Materials and Engineering, 2012, 41(1): 173-177. [16] 张厚安, 古思勇, 张勇, 等. 硅化钼的氧化[M]. 北京: 科学出版社, 2016: 3. ZHANG Houan, GU Siyong, ZHANG Yong, et al.Oxidation of Molybdenum Silicide[M]. Beijing: Science Press, 2016: 3. [17] SANJIB M, BHASKAR P, PANKAJ K S.Effect of Si content on microstructure, mechanical and oxidation properties of hot pressed Mo-Ti-Si alloys[J]. Intermetallic, 2018(100): 126-135.