Effect of nano-Y2O3 on microstructure and properties of 97W-2Ni-Fe tungsten alloy
KANG Jun1, LIN Zehua2, ZHOU Yonggui1, LIU Fangzhou1, ZHOU Chengshang2, YAN Wenmin3
1. Shenzhen Zhuocheng Technology Co., Ltd., Shenzhen 518100, China; 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 3. Key Laboratory of Transient Shock Technology, No. 208 Research Institute of China Ordnance Industry, Beijing 102202, China
Abstract:The 97W-2Ni-Fe and 96.5W-2Ni-Fe-0.5Y2O3 alloys were prepared with W, Ni, Fe and nano-Y2O3 powders as raw materials, and characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), combined with the analysis of liquid content and contiguity, to explore the influence of sintering temperature and addition of nano-Y2O3 powder on the microstructure and mechanical properties of high density tungsten alloy. The results show that with the increase of sintering temperature, the grain size and mechanical properties of tungsten alloy increase obviously. At the sintering temperature of 1 510 ℃ (liquid phase), the grain size of tungsten decreases from 21.6 μm to 7.8 μm, the area fraction of bonding phase increases from 4.45% to 5.35%, and the contact degree is 0.67. The mechanical properties of the alloy are improved significantly. The tensile strength reaches 611 MPa and the hardness (HRC) is 40.1. The tensile fracture morphology of 96.5W-2Ni-Fe-0.5Y2O3 alloy is tearing of bonding phase and cleavage fracture of a small amount of W grains. The addition of nano-Y2O3 increases the tearing ratio of bonding phase.
康俊, 林泽华, 周永贵, 刘方舟, 周承商, 闫文敏. 纳米Y2O3对97W-2Ni-Fe合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2021, 26(2): 117-124.
KANG Jun, LIN Zehua, ZHOU Yonggui, LIU Fangzhou, ZHOU Chengshang, YAN Wenmin. Effect of nano-Y2O3 on microstructure and properties of 97W-2Ni-Fe tungsten alloy. Materials Science and Engineering of Powder Metallurgy, 2021, 26(2): 117-124.
[1] 周承商, 易健宏, 罗述东, 等. W-Ni-Fe 高密度合金的微波烧结[J]. 中国有色金属学报, 2009, 19(9): 1601-1607. ZHOU Chengshang, YI Jianhong, LUO Shudong, et al.Microwave sintering of W-Ni-Fe heavy alloys[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(9): 1601-1607. [2] 周承商, 易健宏, 罗述东. 微波烧结W-Ni-Fe高密度合金的变形现象及显微组织[J]. 粉末冶金材料科学与工程, 2010, 15(3): 300-304. ZHOU Chengshang, YI Jianhong, LUO Shudong.Distortion and microstructure of microwave sintered W-Ni-Fe heavy alloys[J]. Material Science and Engineering of Powder Metallurgy, 2010, 15(3): 300-304. [3] ZHOU C S, YI J H, LUO S D, et al.Effect of heating rate on the microwave sintered W-Ni-Fe heavy alloys[J]. Journal of Alloys and Compounds, 2009, 482(1/2): L6-L8. [4] ZHOU C S, YI J H, LUO S D.Sintering high tungsten content W-Ni-Fe heavy alloys by microwave radiation[J]. Metallurgical and Materials Transactions A, 2013, 45(1): 455-463. [5] MANES A, SERPELLINI F, PAGANI M, et al.Perforation and penetration of aluminium target plates by armour piercing bullets[J]. International Journal of Impact Engineering, 2014, 69: 39-54. [6] BERNETIČ J, KOSEC B, KOSEC G, et al.Phenomena in penetrating piercing bullets in armored steel plate[J]. Metalurgija, 2016, 55(1): 95-98. [7] LIU R, ZHOU Y W, HAO T, et al.Microwave synthesis and properties of fine-grained oxides dispersion strengthened tungsten[J]. Journal of Nuclear Materials, 2012, 424(1/3): 171-175. [8] DONG Z C, LIU N, MA Z W, et al.Preparation of ultra-fine grain W-Y2O3 alloy by an improved wet chemical method and two-step spark plasma sintering[J]. Journal of Alloys and Compounds, 2017, 695(11): 2969-2973. [9] TERENTYEV D, VILÉMOVÁ M, YIN C, et al. Assessment of mechanical properties of SPS-produced tungsten including effect of neutron irradiation[J]. International Journal of Refractory Metals and Hard Materials, 2020, 89: 1-9. [10] ZHOU Z, TAN J, QU D, et al.Basic characterization of oxide dispersion strengthened fine-grained tungsten based materials fabricated by mechanical alloying and spark plasma sintering[J]. Journal of Nuclear Materials, 2012, 431(1/3): 202-205. [11] LIU R B, XIE Z, YAO M, et al.Effects of swaging and annealing on the microstructure and mechanical properties of ZrC dispersion-strengthened tungsten[J]. International Journal of Refractory Metals and Hard Materials, 2018, 76: 33-40. [12] LAY S, ZDZIOBEK A, PÖTSCHKE A, et al. Microstructural investigations in binderless tungsten carbide with grain growth inhibitors[J]. International Journal of Refractory Metals and Hard Materials, 2020, 93: 105340. [13] KIM Y, KYONG H, KIM E, et al.Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(5): 842-846. [14] 高晓菊, 王伯芊, 赵斌, 等. 晶粒长大抑制剂对硬质合金性能的影响[J]. 材料导报, 2014, 28(6): 104-106. GAO Xiaoju, WANG Boqian, ZHAO Bin, et al.Effect of grain growth inhibitor on the propertyies of cemented carbide[J]. Material Report, 2014, 28(6): 104-106. [15] 李亚军, 王正云. 晶粒长大抑制剂对超细WC-9%Co硬质合金性能的影响[J]. 硬质合金, 2011, 28(5): 288-293. LI Yajun, WANG Zhengyun.Effects of grain growth inhibitors on properties of ultra-fine WC-9%Co cemented carbides[J]. Cemented Carbide, 2011, 28(5): 288-293. [16] PATRA A, SAXENA R, KARAK S K.Combined effect of Ni and nano-Y2O3 addition on microstructure, mechanical and high temperature behavior of mechanically alloyed W-Mo[J]. International Journal of Refractory Metals and Hard Materials, 2016, 60: 131-146. [17] WANG J Y, ZUO D B, ZHU L, et al.Effects and influence of Y2O3 addition on the microstructure and mechanical properties of binderless tungsten carbide fabricated by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials, 2018, 71: 167-174. [18] 王迎春, 程兴旺, 吴复尧. Y2O3对钨合金微观组织与性能的影响[J]. 北京理工大学学报, 2007, 27(9): 824-827. WANG Yingchun, CHEN Xingwang, WU Fuyao.Effects of Y2O3 on the microstructure and mechanical properties of tungsten alloys[J]. Transactions of Beijing Institute of Technology, 2007, 27(9): 824-827. [19] RYU H J, HONG H S, BAEK W H.Microstructure and mechanical properties of mechanically alloyed and solid-state sintered tungsten heavy alloys[J]. Materials Science and Engineering A ,2000, 291(1/2): 91-96. [20] AMIRJAN M, ZANGENEH-MADAR K, PARVIN N.Evaluation of microstructure and contiguity of W/Cu composites prepared by coated tungsten powders[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27(4): 729-733. [21] PARK J K, KANG S J L, EUN K Y, et al. Microstructural change during liquid phase sintering of W-Ni-Fe alloy[J]. Metallurgical Transactions A, 1989, 20(5): 837-845. [22] CHURN K S, GERMAN R M.Fracture behavior of W-Ni-Fe heavy alloys[J]. Metallurgical Transactions A, 1984, 15(2): 331-338.